Linear algebra, Math 2R3

Bradd Hart

Sept. 4, 2019

Short-term outline

- Review of complex numbers, appendix B, supplementary material
- Review of real vector spaces, sections 4.1-4.3
- Introduce complex vector spaces, section 5.3

The complex numbers

- Introduce a new quantity, i, such that $i^{2}=-1$.
- The complex numbers are then all expressions of the form $a+b i$ where a and b are real numbers.

The complex numbers

- Introduce a new quantity, i, such that $i^{2}=-1$.
- The complex numbers are then all expressions of the form $a+b i$ where a and b are real numbers.

Operations on the complex numbers

- Addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

- Multiplication:

$$
(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i
$$

Multiplicative inverse

Every non-zero complex number has a multiplicative inverse. That is, if z_{1} is not zero then the equation, in the unknown z, $z_{1} z=1$ has a solution.

Multiplicative inverse

Every non-zero complex number has a multiplicative inverse. That is, if z_{1} is not zero then the equation, in the unknown z, $z_{1} z=1$ has a solution.

The conjugate

- If $z=a+b i$ then \bar{z}, the conjugate of z, is $a-b i$.
- Notice that $z \bar{z}=a^{2}+b^{2}$ so

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}
$$

Why the complex numbers?

- You have been introduced to a variety of number systems since infancy: the natural numbers, the integers, fractions or rational numbers, real numbers.

Why the complex numbers?

- You have been introduced to a variety of number systems since infancy: the natural numbers, the integers, fractions or rational numbers, real numbers.
- The rational numbers, the real numbers and the complex numbers all obey the same algebraic rules e.g. commutativity and associativity of addition and multiplication, distributivity, and all non-zero elements have a multiplicative inverse. They are fields.

Why the complex numbers?

- You have been introduced to a variety of number systems since infancy: the natural numbers, the integers, fractions or rational numbers, real numbers.
- The rational numbers, the real numbers and the complex numbers all obey the same algebraic rules e.g. commutativity and associativity of addition and multiplication, distributivity, and all non-zero elements have a multiplicative inverse. They are fields.
- The complex numbers have the property that if $p(x)$ is a non-zero polynomial with complex coefficients then p has a complex root - the complex numbers form an algebraically closed field.

- Associate to the complex number $z=a+b i$ the point on the plane $(a, b) . r=\sqrt{a^{2}+b^{2}}$ is called the modulus of z and written $|z|$.
- We saw that $z \cdot \bar{z}=|z|^{2}$.
- θ is called an argument for $a+b i$ and is only determined up to multiples of 2π.
- $a=r \cos (\theta)$ and $b=r \sin (\theta)$ so $z=r(\cos (\theta)+i \sin (\theta))$.

