New linear algebra from Terry Tao

- Assume that A is an $n \times n$ Hermitian matrix and M_{j} is the matrix A with the $j^{\text {th }}$ row and column removed.
- Notice that M_{j} is also Hermitian.
- So suppose that $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A and $\lambda_{1}^{j}, \ldots, \lambda_{n-1}^{j}$ are the eigenvalues of M_{j} for each j.
- Finally, assume that a normalized eigenvector of A for λ_{i} has the form $\left(v_{1}^{i}, \ldots, v_{j}^{i}, \ldots, v_{n}^{i}\right)$.

Theorem (Denton, Parke, Tao And Zhang)

$$
\left|v_{j}^{i}\right|^{2} \prod_{k, k \neq i}\left(\lambda_{i}-\lambda_{k}\right)=\prod_{k=1}^{n-1}\left(\lambda_{i}-\lambda_{k}^{j}\right)
$$

