Triangular matrices

Definition

Suppose that $A=\left(a_{i j}\right)$ is an square matrix.

- A is said to be upper triangular if $a_{i j}=0$ when $i>j$ i.e. when the entry is below the diagonal.
- A is said to be lower triangular if $a_{i j}=0$ when $i<j$ i.e. when the entry is above the diagonal.

Triangular matrices, cont'd

Theorem (1.7.1)

- The transpose of an upper triangular matrix is lower triangular and vice versa.
- The product of upper triangular matrices is upper triangular and the same for lower triangular matrices.
- A triangular matrix is invertible iff all its diagonal entries are non-zero.
- The inverse of an upper triangular matrix is upper triangular and the same for lower triangular matrices.

Symmetric matrices

Definition

For a square matrix $A=\left(a_{i j}\right)$ is said to be symmetric if $a_{i j}=a_{j i}$ for all i and j.

Theorem (1.7.2, 1.7.3 and 1.7.4)

Suppose that A and B are symmetric matrices. Then

- A^{T} is symmetric;
- $A+B$ and $A-B$ are symmetric;
- $k A$ is symmetric for all numbers k;
- $A B$ is symmetric iff $A B=B A$; and
- If A is invertible then A^{-1} is also symmetric.

Theorem (1.7.5)

If A is invertible then $A^{T} A$ and $A A^{T}$ are invertible.

Matrices as functions

- We would like to understand matrices as functions.
- The real question should then be: where are they functions from and where do they go to?

The vector space R^{n}

Definition

The set of all ordered n-tuples of real numbers will be denoted R^{n}; the elements of R^{n} are called vectors. Equivalently, we can think of R^{n} as the set of all $n \times 1$ matrices or column vectors i.e. matrices of the form

$$
\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right)
$$

The standard basis

Definition

The standard basis of R^{n} is the set of vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

Linear combinations

Notice that every vector in R^{n} is a linear combination of e_{1}, \ldots, e_{n}.

The transformation T_{A}

Definition

Suppose that A is an $m \times n$ matrix then T_{A} is a function with domain R^{n} and range R^{m}, usually written

$$
T_{A}: R^{n} \rightarrow R^{m}
$$

defined by: for all $x \in R^{n}, T_{A}(x)=A x$.

Theorem

If A is an $m \times n$ matrix, $x, y \in R^{n}$ and $\lambda \in R$ then
(1) $T_{A}(x+y)=T_{A}(x)+T_{A}(y)$ and
(2) $T_{A}(\lambda x)=\lambda T_{A}(x)$

Linear functions

Any function from R^{n} to R^{m} which the two properties from the theorem are called linear functions.

Linear functions

- Suppose that $T: R^{n} \rightarrow R^{m}$ is any linear function.
- Remember that if $x \in R^{n}$ then $x=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ for some $\lambda_{1}, \ldots, \lambda_{n}$.
- So $T(x)=\lambda_{1} T\left(e_{1}\right)+\ldots+\lambda_{n} T\left(e_{n}\right)$.
- This says that every linear function is determined by its values on e_{1}, \ldots, e_{n}.
- Consider the matrix

$$
A=\left(T\left(e_{1}\right)\left|T\left(e_{2}\right)\right| \ldots \mid T\left(e_{n}\right)\right)
$$

- We see that $T=T_{A}$.
- Conclusion: All linear functions from R^{n} to R^{m} are of the form T_{A} for some $m \times n$ matrix A.

Matrix multiplication and composition of functions

- The composition of two linear functions is a linear function.
- If A is $m \times k$ and B is $k \times n$ then we can form $T_{A}\left(T_{B}\right)$ - the composition of these two functions and it will be a linear function.
- By what was said on the previous slide, this linear function will be T_{C} for some C; what is C ?
- $C=A B$.
- So matrix multiplication is what you get when you compose linear functions.

