Definition

Suppose that $A = (a_{ij})$ is an square matrix.

- A is said to be upper triangular if a_{ij} = 0 when i > j i.e. when the entry is below the diagonal.
- A is said to be lower triangular if a_{ij} = 0 when i < j i.e. when the entry is above the diagonal.

Theorem (1.7.1)

- The transpose of an upper triangular matrix is lower triangular and vice versa.
- The product of upper triangular matrices is upper triangular and the same for lower triangular matrices.
- A triangular matrix is invertible iff all its diagonal entries are non-zero.
- The inverse of an upper triangular matrix is upper triangular and the same for lower triangular matrices.

Symmetric matrices

Definition

For a square matrix $A = (a_{ij})$ is said to be symmetric if $a_{ij} = a_{ji}$ for all *i* and *j*.

Theorem (1.7.2, 1.7.3 and 1.7.4)

Suppose that A and B are symmetric matrices. Then

- A^T is symmetric;
- A + B and A B are symmetric;
- kA is symmetric for all numbers k;
- AB is symmetric iff AB = BA; and
- If A is invertible then A^{-1} is also symmetric.

Theorem (1.7.5)

If A is invertible then $A^T A$ and AA^T are invertible.

- We would like to understand matrices as functions.
- The real question should then be: where are they functions from and where do they go to?

Definition

The set of all ordered *n*-tuples of real numbers will be denoted R^n ; the elements of R^n are called vectors. Equivalently, we can think of R^n as the set of all $n \times 1$ matrices or column vectors i.e. matrices of the form

$$\left(egin{array}{c} s_1 \ s_2 \ dots \ s_n \end{array}
ight)$$

Definition

The standard basis of R^n is the set of vectors

$$\boldsymbol{e}_{1} = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \boldsymbol{e}_{2} = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \dots, \boldsymbol{e}_{n} = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}$$

Linear combinations

Notice that every vector in \mathbb{R}^n is a linear combination of e_1, \ldots, e_n .

The transformation T_A

Definition

Suppose that *A* is an $m \times n$ matrix then T_A is a function with domain R^n and range R^m , usually written

$$T_A: \mathbb{R}^n \to \mathbb{R}^n$$

defined by: for all $x \in R^n$, $T_A(x) = Ax$.

Theorem

If A is an $m \times n$ matrix, $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ then

1
$$T_A(x + y) = T_A(x) + T_A(y)$$
 and

$$T_A(\lambda x) = \lambda T_A(x)$$

Linear functions

Any function from R^n to R^m which the two properties from the theorem are called linear functions.

Linear functions

- Suppose that $T : \mathbb{R}^n \to \mathbb{R}^m$ is any linear function.
- Remember that if x ∈ Rⁿ then x = λ₁e₁ + ... + λ_ne_n for some λ₁,..., λ_n.
- So $T(x) = \lambda_1 T(e_1) + \ldots + \lambda_n T(e_n)$.
- This says that every linear function is determined by its values on *e*₁,..., *e_n*.
- Consider the matrix

$$A = (T(e_1)|T(e_2)|\ldots|T(e_n))$$

- We see that $T = T_A$.
- Conclusion: All linear functions from R^n to R^m are of the form T_A for some $m \times n$ matrix A.

Matrix multiplication and composition of functions

- The composition of two linear functions is a linear function.
- If A is m × k and B is k × n then we can form T_A(T_B) the composition of these two functions and it will be a linear function.
- By what was said on the previous slide, this linear function will be T_C for some C; what is C?
- C = AB.
- So matrix multiplication is what you get when you compose linear functions.