A fundamental problem

Problem

Given an $m \times n$ matrix A, find all the b's such that Ax = b has a solution.

Diagonal matrices

Definition

For a square matrix $D = (d_{ij})$ is said to be diagonal if $d_{ij} = 0$ whenever $i \neq j$.

A diagonal matrix is invertible iff all its diagonal entries are non-zero.

Triangular matrices

Definition

Suppose that $A = (a_{ij})$ is an square matrix.

- A is said to be upper triangular if $a_{ij} = 0$ when i > j i.e. when the entry is below the diagonal.
- A is said to be lower triangular if $a_{ij} = 0$ when i < j i.e. when the entry is above the diagonal.

Triangular matrices, cont'd

Theorem (1.7.1)

- The transpose of an upper triangular matrix is lower triangular and vice versa.
- The product of upper triangular matrices is upper triangular and the same for lower triangular matrices.
- A triangular matrix is invertible iff all its diagonal entries are non-zero.
- The inverse of an upper triangular matrix is upper triangular and the same for lower triangular matrices.

Symmetric matrices

Definition

For a square matrix $A = (a_{ij})$ is said to be symmetric if $a_{ij} = a_{ji}$ for all i and j.

Theorem (1.7.2, 1.7.3 and 1.7.4)

Suppose that A and B are symmetric matrice. Then

- A^T is symmetric;
- A + B and A − B are symmetric;
- kA is symmetric for all numbers k;
- AB is symmetric iff AB = BA; and
- If A is invertible then A⁻¹ is also symmetric.

Theorem (1.7.5)

If A is invertible then A^TA and AA^T are invertible.