Main facts about elementary matrices

Theorem

If E is an elementary matrix and $E A$ makes sense then if $E A=B, B$ is the matrix obtained from A by applying the elementary row operation associated with E.

Corollary

All elementary matrices are invertible.

An algorithm

Remember that A is invertible iff it is the product of elementary matrices. In fact, those elementary matrices correspond to the elementary row operations needed to row reduce A to reduced row echelon form.

Inverse algorithm

To find the inverse of an invertible matrix A, find a sequence of elementary row operations that reduces A to the identity and perform the same operations on the identity to produce A^{-1}.

General linear systems

Theorem

- The linear system $A x=b$ has either no solution, exactly one solution or infinitely many solutions.
- If A is invertible then $A x=b$ has a unique solution.

A fundamental problem

Problem

Given an $m \times n$ matrix A, find all the b 's such that $A x=b$ has a solution.

