Invertible matrices

Definition

We say that a square matrix A is invertible if there is a square matrix B of the same size as A such that $A B=I$ and $B A=I$. We call B an inverse of A.

- If A is a square matrix and not invertible we say it is singular and sometimes we refer to invertible matrices as nonsingular.
- If a square matrix A has an inverse then that inverse is unique and we write A^{-1}. So A^{-1} is the inverse of A.

Properties of invertible matrices

Theorem (1.4.6)

Suppose that A and B are invertible $n \times n$ matrices. Then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem (1.4.7)

Suppose that A is an invertible matrix. Then
(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
(b) For any natural number n, A^{n} is invertible and

$$
\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n} .
$$

Properties of the transpose

Theorem (1.4.8 and 1.4.9)

For any matrices A and B for which the following make sense:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- If A is invertible then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Elementary matrices

Elementary row operations

The elementary row operations on a matrix are:

- Multiply a row by a non-zero constant
- Add a constant multiple of one row to another
- Interchange two rows

Definition

An elementary matrix is one obtained from an identity matrix by a single elementary row operation.

Main facts about elementary matrices

Theorem

If E is an elementary matrix and $E A$ makes sense then if $E A=B, B$ is the matrix obtained from A by applying the elementary row operation associated with E.

Corollary

All elementary matrices are invertible

An important theorem

Theorem (1.5.3)

The following are equivalent for a square matrix A :
(1) A is invertible.
(2) The linear system $A x=0$ has only the trivial, 0 , solution.
(3) The reduced row echelon form of A is the identity matrix.
(4) A is a product of elementary matrices.

