Definition

We say that a square matrix A is invertible if there is a square matrix B of the same size as A such that AB = I and BA = I. We call B an inverse of A.

- If A is a square matrix and not invertible we say it is singular and sometimes we refer to invertible matrices as nonsingular.
- If a square matrix A has an inverse then that inverse is unique and we write A⁻¹. So A⁻¹ is the inverse of A.

Theorem (1.4.6)

Suppose that A and B are invertible $n \times n$ matrices. Then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem (1.4.7)

Suppose that A is an invertible matrix. Then

(a)
$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$.

(b) For any natural number n, A^n is invertible and $(A^n)^{-1} = (A^{-1})^n$.

Theorem (1.4.8 and 1.4.9)

For any matrices A and B for which the following make sense:

•
$$(A^T)^T = A$$

•
$$(A+B)^T = A^T + B^T$$

- $(AB)^T = B^T A^T$
- If A is invertible then $(A^{-1})^T = (A^T)^{-1}$

Elementary row operations

The elementary row operations on a matrix are:

- Multiply a row by a non-zero constant
- Add a constant multiple of one row to another
- Interchange two rows

Definition

An elementary matrix is one obtained from an identity matrix by a single elementary row operation.

Theorem

If E is an elementary matrix and EA makes sense then if EA = B, B is the matrix obtained from A by applying the elementary row operation associated with E.

Corollary

All elementary matrices are invertible

Theorem (1.5.3)

The following are equivalent for a square matrix A:

- A is invertible.
- 2 The linear system Ax = 0 has only the trivial, 0, solution.
- The reduced row echelon form of A is the identity matrix.
- A is a product of elementary matrices.