The Putnam competition

- The William Lowell Putnam competition is a university-level mathematics competition held annually for undergraduate students at North American universities.
- More information can be found at math.scu.edu/putnam or on the undergraduate page of the department's website.
- This year's competition will occur on Dec. 6. If you are interested in participating or learning more, drop by Monday and/or send me email.
- Training sessions for this year's Putnam competition will occur on Mondays at 12:30 in HH 410 beginning Sept. 22.

Matrix multiplication

- If A is an $m \times k$ matrix and B is a $k \times n$ matrix then we can multiply A by B forming $A B$ (the order is important). $A B$ is an $m \times n$ matrix.
- For i and j such that $1 \leq i \leq m$ and $1 \leq j \leq n$ then we need to specify the $i j$ entry of $A B$.
- Suppose the $i^{t h}$ row of A and $j^{\text {th }}$ column of B are

$$
\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i k}
\end{array}\right) \text { and }\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{k j}
\end{array}\right)
$$

Then the $i j$ entry of $A B$ is

$$
a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i k} b_{k j}
$$

Back to linear systems

- Suppose we have the linear system

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \ldots & +a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+ & \ldots & +a_{2 n} x_{n}=b_{2} \\
\vdots & \ddots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \ldots & +a_{m n} x_{n}=b_{m}
\end{array}
$$

- Let A, x and b be the matrices

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ddots & \vdots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text { and }\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

- Then the linear system can be written using matrices as $A x=b$.

The transpose and the trace

- If A is an $m \times n$ matrix then the transpose of A, written A^{T} is the $n \times m$ matrix whose $i j$ entries are $(A)_{j i}$.
- If A is an $n \times n$ matrix i.e. a square matrix, then the trace of A, written $\operatorname{tr}(A)$ is

$$
a_{11}+\ldots+a_{n n}
$$

Properties of Matrices

Theorem (1.4.1)

Assume that A, B and C are matrices for which the following operations make sense. Then
(c) $A(B C)=(A B) C$; associativity of matrix multiplication
(d) $A(B+C)=A B+A C$; left distributivity
(e) $(B+C) A=B A+C A$; right distributivity

Some special matrices

- A matrix with only zero entries is called a zero matrix.
- If A is an $n \times n$ matrix with 1 's on the diagonal and 0's everywhere else than A is called the identity matrix and often written I_{n} or sometimes just I if we remember how large it is.

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Invertible matrices

Definition

We say that a square matrix A is invertible if there is a square matrix B of the same size as A such that $A B=I$ and $B A=I$. We call B an inverse of A.

- If A is a square matrix and not invertible we say it is singular and sometimes we refer to invertible matrices as nonsingular.
- If a square matrix A has an inverse then that inverse is unique and we write A^{-1}. So A^{-1} is the inverse of A.

Properties of invertible matrices

Theorem (1.4.6)

Suppose that A and B are invertible $n \times n$ matrices. Then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem (1.4.7)

Suppose that A is an invertible matrix. Then
(a) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
(b) For any natural number n, A^{n} is invertible and

$$
\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n} .
$$

