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Another example, cont’d

AT =



1 2 1 0
2 4 2 0
−1 −2 −1 0

0 −1 −1 1
1 3 2 −1
0 −1 0 1



rref (AT ) =



1 0 0 2
0 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


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Diagonalization and eigenspaces

Suppose that A is an n × n matrix and it has λ as an
eigenvalue.
Remember that we refer to all x ∈ Rn such that Ax = λx as
the eigenspace corresponding to λ for the matrix A; it is a
subspace of Rn.
We say that A is diagonalizable if there is an invertible
matrix P such that P−1AP = D with D a diagonal matrix. In
fact, the numbers on the diagonal of D are the eigenvalues
of A and the columns of P are eigenvectors.
It follows that if A is diagonalizable then there is a basis of
Rn made up of eigenvectors of A.
Conversely, if there is a basis for Rn made up of
eigenvectors of Rn then A is diagonalizable.
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Diagonalization and eigenspaces, cont’d

Buried in here, there is an algorithm for determining
whether a matrix is diagonalizable or not.
Suppose that λ is an eigenvalue for A. We call the
multiplicity of λ in the characteristic polynomial its algebraic
multiplicity. We call the dimension of the eignespace
corresponding to λ it geometric multiplicity.

Theorem
A is diagonalizable Iff for every eigenvalue λ of A, the algebraic
multiplicity of λ equals the geometric multiplicity.
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Where did the geometry go?

Definition
We call a basis S for Rn an orthogonal basis if for every distinct
pair u, v ∈ S, u · v = 0; we say that the basis is orthonormal if
for every u ∈ S, ||u|| = 1.

Fact
Any orthogonal set in Rn is linearly independent.

Coordinates with respect to an orthonormal basis

Suppose that v1, v2, . . . , vn is an orthonormal basis for Rn. If
v ∈ Rn then

v = k1v1 + . . . knvn

where ki = v · vi for i = 1, . . . ,n.
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The Gram-Schmidt process

Suppose we have a linearly independent set u1, . . . ,ur
which spans some subspace of Rn. We would like to find
an orthogonal basis for this same subspace.
We construct an orthogonal set iteratively: let v1 = u1.
Let v2 = u2 − projv1(u2).
Let v3 = u3 − projv1(u3)− projv2(u3).
In general, if we have already defined v1, . . . , vi then let

vi+1 = ui+1 − projv1(ui+1)− . . .− projvi (ui+1)

.
Continue this process until you have dealt with all r vectors.
The resulting v1, . . . , vr will be an orthogonal basis for W .
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The Final Exam

The final exam will be Dec. 18 at 4:30 pm and is 3 hours
long; check the registrar’s exam site for seating.
The material covered for the final exam will be:

sections 1.1 - 1.8 and 2.1 - 2.3 (topics from the first test)
sections 5.1 - 5.2, 5.5, 3.1 - 3.5 and 10.1 - 10.3 from the 9th
edition (topics from the second test)
sections 4.1 - 4.5, 4.7 - 4.8 and 6.3

Weighting on the final will be 50% on the material since the
last test; 25% on the material from each test.
The exam will be multiple choice; bring an HB pencil. You
may use a McMaster approved Casio fx-991 MS or MSPlus
but no other aids. Bring your ID card with you to the exam.
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The Final Exam, cont’d

There are practice problems posted and a practice exam.
Office hours Mon. Dec. 15 and Wed. Dec. 17, 10:30 - 12;
by appointment otherwise. Matt will have office hours in
the help centre; I will post them when I know them. The
help centre is open every weekday from 2:30 - 6:30 during
exams.
There is a review session Tuesday, Dec. 16, 2:30 - 4:30 in
ITB AB 102.
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