- If *S* is any subset of a vector space *V* that spans *V* then there is a basis for *V* contained in *S*.
- To any *m* × *n* matrix *A* we associate a number of subspaces:
- The row space of *A* is the subspace of ℝⁿ spanned by the row vectors of *A*. Its dimension is called the rank of *A*; notice that the rank of *A* can be no bigger than the smaller of *m* and *n*.
- The nullspace of A is the subspace of ℝⁿ of all x such that Ax = 0. Its dimension is called the nullity of A.
- The dimension theorem guarantees that rank(A) + nullity(A) = n.

The column-space of a matrix

- We return to the problem of subspaces of ℝⁿ. The question is: given vectors v₁,..., v_k in ℝⁿ, how do we find a basis for the subspace W spanned by these vectors from among these vectors.
- Consider a matrix A formed by placing v₁,..., v_k in the columns; A is n × k; let B = rref(A), the reduced row-echelon form of A.
- The claim is that the vectors in *A* which correspond to the columns of *B* with leading 1's form a basis for *W*.
- Notice that this means that the dimension of *W* is the same as the rank of *A*.
- In general, for a matrix A which is k × n, the subspace generated by the columns is called the column space of A, a subspace of ℝ^k, and its dimension is the same as the rank of A.

Another example

۲

۲

 $A = \begin{pmatrix} 1 & 2 & -1 & 0 & 1 & 0 \\ 2 & 4 & -2 & -1 & 3 & -1 \\ 1 & 2 & -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 \end{pmatrix}$ $rref(A) = \begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Another example, cont'd

٥

٥

 $A^{T} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 2 & 0 \\ -1 & -2 & -1 & 0 \\ 0 & -1 & -1 & 1 \\ 1 & 3 & 2 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$

Diagonalization and eigenspaces

- Suppose that A is an n × n matrix and it has λ as an eigenvalue.
- Remember that we refer to all x ∈ ℝⁿ such that Ax = λx as the eigenspace corresponding to λ for the matrix A; it is a subspace of ℝⁿ.
- We say that A is diagonalizable if there is an invertible matrix P such that $P^{-1}AP = D$ with D a diagonal matrix. In fact, the numbers on the diagonal of D are the eigenvalues of A and the columns of P are eigenvectors.
- Conversely, if there is a basis for ℝⁿ made up of eigenvectors of ℝⁿ then A is diagonalizable.

Diagonalization and eigenspaces, cont'd

- Buried in here, there is an algorithm for determining whether a matrix is diagonalizable or not.
- Suppose that λ is an eigenvalue for A. We call the multiplicity of λ in the characteristic polynomial its algebraic multiplicity. We call the dimension of the eignespace corresponding to λ it geometric multiplicity.

Theorem

A is diagonalizable iff for every eigenvalue λ of A, the algebraic multiplicity of λ equals the geometric multiplicity.

Definition

We call a basis *S* for \mathbb{R}^n an orthogonal basis if for every distinct pair $u, v \in S$, $u \cdot v = 0$; we say that the basis is orthonormal if for every $u \in S$, ||u|| = 1.

Fact

Any orthogonal set in \mathbb{R}^n is linearly independent.

Coordinates with respect to an orthonormal basis

Suppose that $v_1, v_2, ..., v_n$ is an orthonormal basis for \mathbb{R}^n . If $v \in \mathbb{R}^n$ then

$$v = k_1 v_1 + \ldots k_n v_n$$

where $k_i = v \cdot v_i$ for $i = 1, \ldots, n$.

The Gram-Schmidt process

- Suppose we have a linearly independent set *u*₁,..., *u*_r which spans some subspace of ℝⁿ. We would like to find an orthogonal basis for this same subspace.
- We construct an orthogonal set iteratively: let $v_1 = u_1$.

• Let
$$v_2 = u_2 - proj_{v_1}(u_2)$$
.

• Let
$$v_3 = u_3 - proj_{v_1}(u_3) - proj_{v_2}(u_3)$$
.

• In general, if we have already defined v_1, \ldots, v_i then let

$$v_{i+1} = u_{i+1} - proj_{v_1}(u_{i+1}) - \ldots - proj_{v_i}(u_{i+1})$$

- Continue this process until you have dealt with all r vectors.
- The resulting v_1, \ldots, v_r will be an orthogonal basis for *W*.