Subspaces of \mathbb{R}^{n}

- Suppose that v_{1}, \ldots, v_{k} are vectors in \mathbb{R}^{n}; the big question is, what is the span of these vectors?
- Consider the matrix A with rows consisting of $v_{1}, \ldots, v_{k} ; A$ is $k \times n$.
- Now let $B=\operatorname{rref}(A)$, the reduced row echelon form of A. We claim two things:
- First, the rows of B still span the same subspace as v_{1}, \ldots, v_{k} and
- second, the non-zero rows form a basis for this subspace.
- In general, the subspace spanned by the rows of a matrix is called the row space and if the matrix is $k \times n$ then the row space is a subspace of \mathbb{R}^{n}. The dimension of the row-space of A is called the rank of A.

Example

$$
\begin{aligned}
A= & \left(\begin{array}{cccccc}
1 & 1 & 1 & 2 & 3 & -1 \\
1 & 1 & 1 & 0 & 3 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 3 & 0
\end{array}\right) \\
\operatorname{rref}(A) & =\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The nullspace and the nullity

- Remember that the nullspace for an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} consisting of all x such that $A x=0$.
- The nullity of A, nullity (A), is the dimension of the nullspace of A.

Theorem (Dimension Theorem for Matrices, 4.8.2)

For an $m \times n$ matrix A, $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$

The column-space of a matrix

- We return to the problem of subspaces of \mathbb{R}^{n}. The question is: given vectors v_{1}, \ldots, v_{k} in \mathbb{R}^{n}, how do we find a basis for the subspace W spanned by these vectors from among these vectors.
- Consider a matrix A formed by placing v_{1}, \ldots, v_{k} in the columns; A is $n \times k$; let $B=\operatorname{rref}(A)$, the reduced row-echelon form of A.
- The claim is that the vectors in A which correspond to the columns of B with leading 1 's form a basis for W.
- Notice that this means that the dimension of W is the same as the rank of A.
- In general, for a matrix A which is $k \times n$, the subspace generated by the columns is called the column space of A, a subspace of \mathbb{R}^{k}, and its dimension is the same as the rank of A.

Back to the example

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 ; \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 \\
3 & 3 & 1 & 3 \\
-1 & 1 & 0 & 0
\end{array}\right) \\
\operatorname{rref}(A) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

