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Echelon forms

A matrix is in row echelon form if
1 If a row isn’t entirely zeroes then the left most non-zero

entry is a 1; we call this 1 the row’s leading 1.
2 All zero rows are grouped contiguously at the bottom of the

matrix.
3 In any two consecutive rows which are both non-zero, the

leading 1 of the upper row is to the left of the leading 1 of
the lower row.

4 If additionally, any column which contains a leading 1 has
zeroes elsewhere then we say the matrix is in reduced
row echelon form.
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Gaussian and Gauss-Jordan elimination

1 Given the augmented matrix for a system of linear
equations, find the left most column which is not all zero.

2 Interchange rows so that the non-zero entry from the
previous step is the top row.

3 If the non-zero entry you have found is a then divide the
top row by a so that its left most entry is 1.

4 Work down row by row adding multiples of the first row to
each row to guarantee that all entries below this 1 are zero.

5 Now ignore the top row and repeat the process with the
rows you have remaining until there are no more rows left;
this gets the matrix into row echelon form.

6 For reduced row echelon form, start with the right most
leading 1 and working left, add suitable multiples of that
row to the rows above to guarantee that all entries above
leading 1’s are 0.
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Homogeneous systems

We say that a system of linear equations is a
homogeneous system if all the constants in the equations
(the right-hand sides) are 0.
Any homogeneous system of linear equations has at least
one solution.
Theorem: Any homogeneous system with more unknowns
than equations has infinitely many solutions.
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Matrices

A rectangular array of numbers

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
. . .

...
am1 am2 . . . amn


is called a matrix.
The matrix A has m rows and n columns; we say that A is an
m × n matrix. The entry in the i th row and j th column is aij ; also
written (A)ij .

We say two matrices A and B are equal if they have the same
number of rows and columns and for all relevant i and j ,
(A)ij = (B)ij .
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Basic algebraic operations

If A and B are m × n matrices then we define A + B to be
the m × n matrix whose ij entries are (A)ij + (B)ij .
If A is an m × n matrix and c is any number then cA is the
m × n matrix whose ij entries are c(A)ij .

Bradd Hart Matrices



logo

Matrix multiplication

If A is an m × k matrix and B is a k × n matrix then we can
multiply A by B forming AB (the order is important). AB is
an m × n matrix.
For i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n then we need
to specify the ij entry of AB.
Suppose the i th row of A and j th column of B are

(
ai1 ai2 . . . aik

)
and


b1j
b2j
...

bkj


Then the ij entry of AB is

ai1b1j + ai2b2j + . . .+ aikbkj
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Back to linear systems

Suppose we have the linear system

a11x1 + a12x2+ . . . +a1nxn = b1
a21x1 + a22x2+ . . . +a2nxn = b2

...
. . .

...
am1x1 + am2x2+ . . . +amnxn = bm

Let A, x and b be the matrices
a11 a12 . . . a1n
a21 a22 . . . a2n

...
. . .

...
am1 am2 . . . amn

 ,


x1
x2
...

xn

 and


b1
b2
...

bn


Then the linear system can be written using matrices as
Ax = b.
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