Echelon forms

A matrix is in row echelon form if
(1) If a row isn't entirely zeroes then the left most non-zero entry is a 1 ; we call this 1 the row's leading 1.
(2) All zero rows are grouped contiguously at the bottom of the matrix.
(3) In any two consecutive rows which are both non-zero, the leading 1 of the upper row is to the left of the leading 1 of the lower row.
(4) If additionally, any column which contains a leading 1 has zeroes elsewhere then we say the matrix is in reduced row echelon form.

Gaussian and Gauss-Jordan elimination

(1) Given the augmented matrix for a system of linear equations, find the left most column which is not all zero.
(2) Interchange rows so that the non-zero entry from the previous step is the top row.
(3) If the non-zero entry you have found is a then divide the top row by a so that its left most entry is 1 .
(9) Work down row by row adding multiples of the first row to each row to guarantee that all entries below this 1 are zero.
(0) Now ignore the top row and repeat the process with the rows you have remaining until there are no more rows left; this gets the matrix into row echelon form.
(0) For reduced row echelon form, start with the right most leading 1 and working left, add suitable multiples of that row to the rows above to guarantee that all entries above leading 1 's are 0 .

Homogeneous systems

- We say that a system of linear equations is a homogeneous system if all the constants in the equations (the right-hand sides) are 0 .
- Any homogeneous system of linear equations has at least one solution.
- Theorem: Any homogeneous system with more unknowns than equations has infinitely many solutions.

Matrices

A rectangular array of numbers

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ddots & \vdots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

is called a matrix.
The matrix A has m rows and n columns; we say that A is an $m \times n$ matrix. The entry in the $i^{\text {th }}$ row and $j^{t h}$ column is $a_{i j}$; also written $(A)_{i j}$.

We say two matrices A and B are equal if they have the same number of rows and columns and for all relevant i and j, $(A)_{i j}=(B)_{i j}$.

Basic algebraic operations

- If A and B are $m \times n$ matrices then we define $A+B$ to be the $m \times n$ matrix whose $i j$ entries are $(A)_{i j}+(B)_{i j}$.
- If A is an $m \times n$ matrix and c is any number then $c A$ is the $m \times n$ matrix whose $i j$ entries are $c(A)_{i j}$.

Matrix multiplication

- If A is an $m \times k$ matrix and B is a $k \times n$ matrix then we can multiply A by B forming $A B$ (the order is important). $A B$ is an $m \times n$ matrix.
- For i and j such that $1 \leq i \leq m$ and $1 \leq j \leq n$ then we need to specify the $i j$ entry of $A B$.
- Suppose the $i^{t h}$ row of A and $j^{\text {th }}$ column of B are

$$
\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i k}
\end{array}\right) \text { and }\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{k j}
\end{array}\right)
$$

Then the $i j$ entry of $A B$ is

$$
a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i k} b_{k j}
$$

Back to linear systems

- Suppose we have the linear system

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \ldots & +a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+ & \ldots & +a_{2 n} x_{n}=b_{2} \\
\vdots & \ddots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \ldots & +a_{m n} x_{n}=b_{m}
\end{array}
$$

- Let A, x and b be the matrices

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ddots & \vdots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text { and }\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

- Then the linear system can be written using matrices as $A x=b$.

