Basis

Definition

If V is a vector space and S is a subset of V then S is a basis for V if
(1) S is linearly independent and
(2) S spans V.

Theorem

If S is a basis for V then every vector $v \in V$ can be expressed in the form

$$
v=k_{1} v_{1}+k_{2} v_{2}+\ldots+k_{n} v_{n}
$$

for distinct $v_{1}, \ldots, v_{n} \in S$ in exactly one way.

Dimension

Definition

We say that a vector space is finite-dimensional if it has a finite basis.

Theorem

If V is a vector space with a basis of n vectors then
(1) any subset of V with more than n vectors is linearly dependent, and
(2) any subset of V with fewer than n vectors does not span V.

Corollary

If V is a finite-dimensional vector space then all bases for V have the same size; we call this size the dimension of V.

The Plus/Minus Theorem

Theorem (Plus/Minus Theorem, 4.5.3)

Suppose that S is a non-empty subset of a vector space V. Then
(1) if S is linearly independent and $v \in V$ is not in $\operatorname{span}(S)$ then $S \cup\{v\}$ is linearly independent, and
(2) if $v \in S$ can be expressed as a linear combination of vectors from $S \backslash\{v\}$ then $\operatorname{span}(S)=\operatorname{span}(S \backslash\{v\})$.

Corollaries

Corollary

Suppose that V is an n-dimensional vector space and S is a subset of V.
(1) If S spans V then S contains a basis for V.
(2) If S is linearly independent then S is contained in a basis for V.
(3) If S contains exactly n vectors then S is a basis for V iff S is linearly independent.

Corollary

If W is a subspace of a finite-dimensional vector space V then
(1) W is finite-dimensional;
(2) $\operatorname{dim}(W) \leq \operatorname{dim}(V)$; and
(3) $\operatorname{dim}(W)=\operatorname{dim}(V)$ iff $W=V$.

