A quick review

- If V is a vector space and X is a subset of V then there is a subspace W containing X with the property that if any other subspace W^{\prime} contains X then $W \subseteq W^{\prime}$. This subspace is called the span of X.
- The span of X is made up of all linear combinations of elements of X.
- We say that v depends on X if v is in the $\operatorname{span}(X)$.
- v depends on X iff v can be expressed as a linear combination of vectors from X.

Linear independence

Definition

A subset S of a vector space V is linearly independent if whenever $v_{1}, \ldots, v_{n} \in S$ are distinct and

$$
k_{1} v_{1}+\ldots+k_{n} v_{n}=0
$$

then it must be that

$$
k_{1}=\ldots=k_{n}=0
$$

S is said to be linearly dependent if it is not linearly independent.

A couple of important facts

Fact

If V is a vector space and $S \subseteq V$ then S is linearly dependent iff for some $v \in S, v$ depends on $S \backslash\{v\}$ i.e. v can be written as a linear combination of vectors from $S \backslash\{v\}$.

Theorem

If S is a set of more than n vectors from \mathbb{R}^{n} then S is linearly dependent.

Basis

Definition

If V is a vector space and S is a subset of V then S is a basis for V if
(1) S is linearly independent and
(2) S spans V.

Theorem

If S is a basis for V then every vector $v \in V$ can be expressed in the form

$$
v=k_{1} v_{1}+k_{2} v_{2}+\ldots+k_{n} v_{n}
$$

for distinct $v_{1}, \ldots, v_{n} \in S$ in exactly one way.

