Definition

Suppose that *V* is a non-empty set, + is function on pairs from *V* and for every $k \in \mathbb{R}$ and $u \in V$, ku is defined. We say that *V* together with these operations defines a vector space if the following axioms are satisfied for all $u, v, w \in V$ and $k, m \in \mathbb{R}$:

Vector spaces, cont'd

 $\mathbf{0} \quad u+v \in V.$

$$\mathbf{2} \quad u+v=v+u$$

3
$$u + (v + w) = (u + v) + w$$

- there is a $0 \in V$ such that u + 0 = u for all $u \in V$
- **5** there is a $-u \in V$ such that u + (-u) = 0
- Image: N = 0 ≤ 0
 Image: N = 0
 <
- $\bigcirc k(u+v) = ku + kv$
- (k+m)u = ku + mu
- (mu) = (km)u
- 1 u = u

Definition

Suppose that V is a vector space and W is a non-empty subset of V. We say that W is a subspace of V if with respect to the + and scalar multiplication restricted to W from V, W is a vector space in its own right.

Theorem

If V is a vector space and W is a non-empty subset of V then W is a subspace iff W is closed under + and scalar multiplication.

Theorem

If V is a vector space and X is a subset of V then there is a subspace W containing X with the property that if any other subspace W' contains X then $W \subseteq W'$.

Definition

- We call the W in the previous theorem the subspace spanned by X and write span(X).
- 2 If $x_1, \ldots, x_n \in X$ and $k_1, \ldots, k_n \in \mathbb{R}$ then we call $k_1x_1 + \ldots + k_nx_n$ a linear combination of elements of X.

Fact

If X is a subset of a vector space V then the set of all linear combinations of elements of X is the subspace spanned by X.

Definition

If *V* is a vector space, $v \in V$ and $X \subseteq V$ then we say that *v* depends on *X* if *v* is in the span(*X*).

Fact

If X is a subset of a vector space V and $v \in V$ then v depends on X iff v can be expressed as a linear combination of vectors from X.