The cross product

Definition

Suppose that $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ are two vectors in \mathbb{R}^{3}. We define the cross product of u with v, written $u \times v$, as

$$
\left(u_{2} v_{3}-v_{2} u_{3}, v_{1} u_{3}-u_{1} v_{3}, u_{1} v_{2}-v_{1} u_{2}\right)
$$

- $u \times v$ can also be described geometrically as a vector which is both orthogonal to u and v, has length $\|u\|\|v\| \sin (\theta)$ where θ is the angle between u and v, and is oriented according to the right-hand rule.

Area, volume and the determinant

- The area of the parallelogram determined by two vectors $u, v \in \mathbb{R}^{3}$ is $\|u \times v\|$.
- So if $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ then the area of the parallelogram determined by u and v is the absolute value of

$$
\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}
$$

- The area of the triangle determined by two vectors $u, v \in \mathbb{R}^{3}$ is $\|u \times v\| / 2$. These formulas even work in \mathbb{R}^{2}.
- The volume of the parallelepiped determined by three vectors $u, v, w \in \mathbb{R}^{3}$ is $|u \cdot(v \times w)|$. So if A is the 3×3 matrix with rows given by u, v and w then the area of this parallelepiped is $|\operatorname{det}(A)|$.

The test

- The second test is scheduled for Nov. 14 at 10:30 am (that is class time). The test will be 50 minutes.
- If your surname is in the range $\mathrm{A}-\mathrm{O}$ then you will write the test in T28/001; P - Z will write in T29/101.
- The test will be multiple choice and you will need to bring an HB pencil. You will be allowed to have the McMaster approved Casio fx-991 MS but no other aids. Please bring your ID card with you to the test.
- The test will cover sections 5.1-5.2, 5.5, 3.1-3.5 and 10.1 - 10.3 from the 9th edition. I will post additional problems.
- There is a practice test for Test 2. Please try the practice test once you have studied for the test; I will post the solutions on Monday.
- There is a review class which will be run by Matt on Thursday, Nov. 13, 5:30-7:30 in HH 302; the class Wed. Nov. 12 will also be review.

Vector spaces

Definition

Suppose that V is a non-empty set, + is function on pairs from V and for every $k \in \mathbb{R}$ and $u \in V, k u$ is defined. We say that V together with these operations defines a vector space if the following axioms are satisfied for all $u, v, w \in V$ and $k, m \in \mathbb{R}$:

Vector spaces, cont'd

(1) $u+v \in V$.
(2) $u+v=v+u$
(3) $u+(v+w)=(u+v)+w$
(4) there is a $0 \in V$ such that $u+0=u$ for all $u \in V$
(5) there is a $-u \in V$ such that $u+(-u)=0$
(6) $k u \in V$
(7) $k(u+v)=k u+k v$
(8) $(k+m) u=k u+m u$
(9) $k(m u)=(k m) u$
(10) $1 u=u$

