Orthogonality

Definition

- We say that two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \cdot v=0$.
- We say that a set of vectors is orthogonal if any two distinct vectors in the set are orthogonal and the set is orthonormal if all the vectors have length 1.

Orthogonality, cont'd

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_{1} and w_{2} such that $u=w_{1}+w_{2}$ with w_{1} orthogonal to w_{2} and w_{1} a multiple of a. In fact,

$$
w_{1}=\frac{u \cdot a}{\|a\|^{2}} a \text { and } w_{2}=u-w_{1}
$$

Theorem (Pythagoras)

$\operatorname{In} \mathbb{R}^{n}$, if u and v are orthogonal then

$$
\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2}
$$

Orthogonality and matrix multiplication

- Suppose that A is $m \times k$ with rows r_{1}, \ldots, r_{m} and B is $k \times n$ with columns c_{1}, \ldots, c_{n}. Then the $i j$ entry of $A B$ is $r_{i} \cdot c_{j}$.
- In particular, if A is $m \times n$ and we know that x satisfies $A x=0$ then x is a vector in \mathbb{R}^{n} which is orthogonal to all the row vectors.
- Geometrically then if x_{0} satisfies $A x=b$ then all solutions of $A x=b$ can be obtained by adding x_{0} to any vector which is orthogonal to all the row vectors of A i.e. a solution of $A x=0$.

Lines and planes in \mathbb{R}^{n}

Definition

- If x_{0} and v are vectors in \mathbb{R}^{n} then $x=x_{0}+t v$ defines a line passing through x_{0} parallel to v in \mathbb{R}^{n}.
- If x_{0}, u and v are vectors in \mathbb{R}^{n} and u is not a multiple of v then $x=x_{0}+t_{1} u+t_{2} v$ defines the plane in \mathbb{R}^{n} passing through x_{0} and parallel to u and v.

The cross product

Definition

Suppose that $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ are two vectors in \mathbb{R}^{3}. We define the cross product of u with v, written $u \times v$, as

$$
\left(u_{2} v_{3}-v_{2} u_{3}, v_{1} u_{3}-u_{1} v_{3}, u_{1} v_{2}-v_{1} u_{2}\right)
$$

- $u \times v$ can also be described geometrically as a vector which is both orthogonal to u and v, has length $\|u \mid\|\|v\| \sin (\theta)$ where θ is the angle between u and v, and is oriented according to the right-hand rule (watch my hands).
- Theorems 3.5.1 and 3.5.2 have many properties of the cross product which follow immediately from one or the other way of looking at the cross product.

