Definition

- We say that two vectors u, v ∈ ℝⁿ are orthogonal if u ⋅ v = 0.
- We say that a set of vectors is orthogonal if any two distinct vectors in the set are orthogonal and the set is orthonormal if all the vectors have length 1.

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_1 and w_2 such that $u = w_1 + w_2$ with w_1 orthogonal to w_2 and w_1 a multiple of a. In fact,

$$w_1 = rac{u \cdot a}{||a||^2}$$
 a and $w_2 = u - w_1$

Theorem (Pythagoras)

In \mathbb{R}^n , if u and v are orthogonal then

$$||u||^2 + ||v||^2 = ||u + v||^2$$

Orthogonality and matrix multiplication

- Suppose that A is $m \times k$ with rows r_1, \ldots, r_m and B is $k \times n$ with columns c_1, \ldots, c_n . Then the *ij* entry of AB is $r_i \cdot c_j$.
- In particular, if A is m × n and we know that x satisfies
 Ax = 0 then x is a vector in ℝⁿ which is orthogonal to all the row vectors.
- Geometrically then if x_0 satisfies Ax = b then all solutions of Ax = b can be obtained by adding x_0 to any vector which is orthogonal to all the row vectors of A i.e. a solution of Ax = 0.

Definition

- If x_0 and v are vectors in \mathbb{R}^n then $x = x_0 + tv$ defines a line passing through x_0 parallel to v in \mathbb{R}^n .
- If x₀, u and v are vectors in ℝⁿ and u is not a multiple of v then x = x₀ + t₁u + t₂v defines the plane in ℝⁿ passing through x₀ and parallel to u and v.

The cross product

Definition

Suppose that $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ are two vectors in \mathbb{R}^3 . We define the cross product of *u* with *v*, written $u \times v$, as

$$(U_2V_3 - V_2U_3, V_1U_3 - U_1V_3, U_1V_2 - V_1U_2)$$

- *u* × *v* can also be described geometrically as a vector which is both orthogonal to *u* and *v*, has length ||*u*|||*v*||sin(θ) where θ is the angle between *u* and *v*, and is oriented according to the right-hand rule (watch my hands).
- Theorems 3.5.1 and 3.5.2 have many properties of the cross product which follow immediately from one or the other way of looking at the cross product.