

- \mathbb{R}^n or real *n*-space is the collection of all *n*-tuples $v = (v_1, v_2, ..., v_n)$ where $v_1, ..., v_n \in \mathbb{R}$. We refer to elements of \mathbb{R}^n as vectors.
- We define addition between vectors in \mathbb{R}^n as follows:

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n)$$

• Scalar multiples of vectors in \mathbb{R}^n is defined, for $r \in \mathbb{R}$ by

$$r(v_1,\ldots,v_n)=(rv_1,\ldots,rv_n)$$

The norm of a vector $v = (v_1, \ldots, v_n)$, written ||v||, is

 $\sqrt{v_1^2} + \ldots + v_n^2$ and there is a corresponding notion of distance d(u, v) = ||u - v||.

The norm of a vector $v = (v_1, \ldots, v_n)$, written ||v||, is

 $\sqrt{v_1^2 + \ldots + v_n^2}$ and there is a corresponding notion of distance d(u, v) = ||u - v||.

Theorem (3.2.1)

For $v \in \mathbb{R}^n$,

The norm of a vector $v = (v_1, ..., v_n)$, written ||v||, is

 $\sqrt{v_1^2 + \ldots + v_n^2}$ and there is a corresponding notion of distance d(u, v) = ||u - v||.

Theorem (3.2.1)

For $v \in \mathbb{R}^n$,

The norm of a vector $v = (v_1, ..., v_n)$, written ||v||, is

 $\sqrt{v_1^2 + \ldots + v_n^2}$ and there is a corresponding notion of distance d(u, v) = ||u - v||.

Theorem (3.2.1)

For $v \in \mathbb{R}^n$,

•
$$||v|| \geq 0$$

•
$$||v|| = 0$$
 iff $v = 0$

The norm of a vector $v = (v_1, ..., v_n)$, written ||v||, is

 $\sqrt{v_1^2 + \ldots + v_n^2}$ and there is a corresponding notion of distance d(u, v) = ||u - v||.

Theorem (3.2.1)

For $v \in \mathbb{R}^n$,

||v|| ≥ 0

•
$$||v|| = 0$$
 iff $v = 0$

$$\bullet ||kv|| = |k|||v||$$

For two vectors $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$ in \mathbb{R}^n we define the dot product

$$(u_1,\ldots,u_n)\cdot(v_1,\ldots,v_n)=u_1v_1+\ldots+u_nv_n$$

and the angle θ between non-zero vectors u and v by

$$\cos(\theta) = \frac{u \cdot v}{||u||||v||}$$

Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector *v*, *v* · *v* ≥ 0 and *v* · *v* = 0 iff *v* = 0.

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector *v*, *v* · *v* ≥ 0 and *v* · *v* = 0 iff *v* = 0.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^n$, $|u \cdot v| \le ||u||||v||$.

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, v ⋅ v ≥ 0 and v ⋅ v = 0 iff v = 0.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^n$, $|u \cdot v| \le ||u||||v||$.
- This allows us to prove the triangle inequality: for all vectors u, v ∈ ℝⁿ, ||u + v|| ≤ ||u|| + ||v||.

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, v ⋅ v ≥ 0 and v ⋅ v = 0 iff v = 0.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^n$, $|u \cdot v| \le ||u||||v||$.
- This allows us to prove the triangle inequality: for all vectors u, v ∈ ℝⁿ, ||u + v|| ≤ ||u|| + ||v||.
- Theorems 3.2.6 and 3.2.7 express in *n*-space two geometric results: for all vectors *u*, *v* ∈ ℝⁿ,

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$
 and
 $u \cdot v = \frac{1}{4}||u + v||^2 - \frac{1}{4}||u - v||^2$

Bradd Hart Complex numbers and n-space

 We say that two vectors u, v ∈ ℝⁿ are orthogonal if u · v = 0.

- We say that two vectors u, v ∈ ℝⁿ are orthogonal if u ⋅ v = 0.
- We say that a set of vectors is orthogonal if any two distinct vectors in the set are orthogonal and the set is orthonormal if all the vectors have length 1.

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_1 and w_2 such that $u = w_1 + w_2$ with w_1 orthogonal to w_2 and w_1 a multiple of a. In fact,

$$w_1 = rac{u \cdot a}{||a||^2} a ext{ and } w_2 = u - w_1$$

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_1 and w_2 such that $u = w_1 + w_2$ with w_1 orthogonal to w_2 and w_1 a multiple of a. In fact,

$$w_1 = \frac{u \cdot a}{||a||^2}a$$
 and $w_2 = u - w_1$

Theorem (Pythagoras)

In \mathbb{R}^n , if u and v are orthogonal then

$$||u||^2 + ||v||^2 = ||u + v||^2$$