Definition

- \mathbb{R}^{n} or real n-space is the collection of all n-tuples $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{1}, \ldots, v_{n} \in \mathbb{R}$. We refer to elements of \mathbb{R}^{n} as vectors.
- We define addition between vectors in \mathbb{R}^{n} as follows:

$$
\left(u_{1}, \ldots, u_{n}\right)+\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)
$$

- Scalar multiples of vectors in \mathbb{R}^{n} is defined, for $r \in \mathbb{R}$ by

$$
r\left(v_{1}, \ldots, v_{n}\right)=\left(r v_{1}, \ldots, r v_{n}\right)
$$

The norm on \mathbb{R}^{n}

The norm on \mathbb{R}^{n}
The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is
$\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

The norm on \mathbb{R}^{n}

The norm on \mathbb{R}^{n}
The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is
$\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

Theorem (3.2.1)
For $v \in \mathbb{R}^{n}$,

The norm on \mathbb{R}^{n}

The norm on \mathbb{R}^{n}
The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is
$\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

Theorem (3.2.1)
For $v \in \mathbb{R}^{n}$,

- $\|v\| \geq 0$

The norm on \mathbb{R}^{n}

The norm on \mathbb{R}^{n}
The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is
$\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

Theorem (3.2.1)
For $v \in \mathbb{R}^{n}$,

- $\|v\| \geq 0$
- $\|v\|=0$ iff $v=0$

The norm on \mathbb{R}^{n}

The norm on \mathbb{R}^{n}
The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is
$\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

Theorem (3.2.1)

$$
\begin{aligned}
& \text { For } v \in \mathbb{R}^{n} \text {, } \\
& \text { - }\|v\| \geq 0 \\
& \text { - }\|v\|=0 \text { iff } v=0 \\
& \text { - }\|k v\|=|k|\|v\|
\end{aligned}
$$

The geometry of \mathbb{R}^{n}

Definition

For two vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} we define the dot product

$$
\left(u_{1}, \ldots, u_{n}\right) \cdot\left(v_{1}, \ldots, v_{n}\right)=u_{1} v_{1}+\ldots+u_{n} v_{n}
$$

and the angle θ between non-zero vectors u and v by

$$
\cos (\theta)=\frac{u \cdot v}{\|u\|\|v\|}
$$

The geometry of \mathbb{R}^{n}, cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, $v \cdot v \geq 0$ and $v \cdot v=0$ iff $v=0$.

The geometry of \mathbb{R}^{n}, cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, $v \cdot v \geq 0$ and $v \cdot v=0$ iff $v=0$.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^{n},|u \cdot v| \leq\|u|\|\mid v\|$.

The geometry of \mathbb{R}^{n}, cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, $v \cdot v \geq 0$ and $v \cdot v=0$ iff $v=0$.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^{n},|u \cdot v| \leq\|u|\|\mid v\|$.
- This allows us to prove the triangle inequality: for all vectors $u, v \in \mathbb{R}^{n},\|u+v\| \leq\|u\|+\|v\|$.

The geometry of \mathbb{R}^{n}, cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, $v \cdot v \geq 0$ and $v \cdot v=0$ iff $v=0$.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^{n},|u \cdot v| \leq\|u|\|\mid v\|$.
- This allows us to prove the triangle inequality: for all vectors $u, v \in \mathbb{R}^{n},\|u+v\| \leq\|u\|+\|v\|$.
- Theorems 3.2.6 and 3.2.7 express in n-space two geometric results: for all vectors $u, v \in \mathbb{R}^{n}$,

$$
\begin{gathered}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \text { and } \\
u \cdot v=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}
\end{gathered}
$$

Orthogonality

Definition

Orthogonality

Definition

- We say that two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \cdot v=0$.

Orthogonality

Definition

- We say that two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \cdot v=0$.
- We say that a set of vectors is orthogonal if any two distinct vectors in the set are orthogonal and the set is orthonormal if all the vectors have length 1.

Orthogonality, cont'd

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_{1} and w_{2} such that $u=w_{1}+w_{2}$ with w_{1} orthogonal to w_{2} and w_{1} a multiple of a. In fact,

$$
w_{1}=\frac{u \cdot a}{\|a\|^{2}} a \text { and } w_{2}=u-w_{1}
$$

Orthogonality, cont'd

Theorem (3.3.2)

If u and a are vectors in n-space and $a \neq 0$ then there are unique vectors w_{1} and w_{2} such that $u=w_{1}+w_{2}$ with w_{1} orthogonal to w_{2} and w_{1} a multiple of a. In fact,

$$
w_{1}=\frac{u \cdot a}{\|a\|^{2}} a \text { and } w_{2}=u-w_{1}
$$

Theorem (Pythagoras)

$\operatorname{In} \mathbb{R}^{n}$, if u and v are orthogonal then

$$
\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2}
$$

