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Rn

Definition
Rn or real n-space is the collection of all n-tuples
v = (v1, v2, . . . , vn) where v1, . . . , vn ∈ R. We refer to
elements of Rn as vectors.
We define addition between vectors in Rn as follows:

(u1, . . . ,un) + (v1, . . . , vn) = (u1 + v1, . . . ,un + vn)

Scalar multiples of vectors in Rn is defined, for r ∈ R by

r(v1, . . . , vn) = (rv1, . . . , rvn)
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The norm on Rn

The norm on Rn

The norm of a vector v = (v1, . . . , vn), written ||v ||, is√
v2

1 + . . .+ v2
n and there is a corresponding notion of distance

d(u, v) = ||u − v ||.

Theorem (3.2.1)

For v ∈ Rn,

||v || ≥ 0
||v || = 0 iff v = 0
||kv || = |k |||v ||
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The geometry of Rn

Definition
For two vectors u = (u1, . . . ,un) and v = (v1, . . . , vn) in Rn we
define the dot product

(u1, . . . ,un) · (v1, . . . , vn) = u1v1 + . . .+ unvn

and the angle θ between non-zero vectors u and v by

cos(θ) =
u · v
||u||||v ||
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The geometry of Rn, cont’d

Theorems 3.2.2 and 3.2.3 have many valuable parts; I
draw your attention to the part which says: for a vector v ,
v · v ≥ 0 and v · v = 0 iff v = 0.

Theorem 3.2.4, the Cauchy-Schwartz inequality says that
for all vectors u, v ∈ Rn, |u · v | ≤ ||u||||v ||.
This allows us to prove the triangle inequality: for all
vectors u, v ∈ Rn, ||u + v || ≤ ||u||+ ||v ||.
Theorems 3.2.6 and 3.2.7 express in n-space two
geometric results: for all vectors u, v ∈ Rn,

||u + v ||2 + ||u − v ||2 = 2(||u||2 + ||v ||2) and

u · v =
1
4
||u + v ||2 − 1

4
||u − v ||2
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Orthogonality

Definition

We say that two vectors u, v ∈ Rn are orthogonal if
u · v = 0.
We say that a set of vectors is orthogonal if any two distinct
vectors in the set are orthogonal and the set is
orthonormal if all the vectors have length 1.
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Orthogonality, cont’d

Theorem (3.3.2)
If u and a are vectors in n-space and a 6= 0 then there are
unique vectors w1 and w2 such that u = w1 + w2 with w1
orthogonal to w2 and w1 a multiple of a. In fact,

w1 =
u · a
||a||2

a and w2 = u − w1

Theorem (Pythagoras)

In Rn, if u and v are orthogonal then

||u||2 + ||v ||2 = ||u + v ||2
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