The complex plane

- $r=\sqrt{a^{2}+b^{2}}$; this is called the modulus of the complex number $z=a+b i$ and written $|z|$.
- We saw that $z \cdot \bar{z}=|z|^{2}$.
- θ is an argument for $a+b i$ and is only determined up to multiples of 2π.
- $a=r \cos (\theta)$ and $b=r \sin (\theta)$ so $z=r(\cos (\theta)+i \sin (\theta))$.

A beautiful formula and a caveat going forward

- Exponentiation can be defined on complex numbers as follows:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

- Consider then that if $\theta=\pi$ then

$$
e^{i \pi}+1=0
$$

Linear algebra over the complex numbers
Everything we have done in the course to date - linear systems, matrices, determinants, eigenvalues, diagonalization - all goes through unchanged if we are using complex numbers instead of real numbers. Going forward it will be considered fair to have complex entries in matrices and to consider complex roots of polynomials.

Definition

- \mathbb{R}^{n} or real n-space is the collection of all n-tuples $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where $v_{1}, \ldots, v_{n} \in \mathbb{R}$. We refer to elements of \mathbb{R}^{n} as vectors.
- We define addition between vectors in \mathbb{R}^{n} as follows:

$$
\left(u_{1}, \ldots, u_{n}\right)+\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)
$$

- Scalar multiples of vectors in \mathbb{R}^{n} is defined, for $r \in \mathbb{R}$ by

$$
r\left(v_{1}, \ldots, v_{n}\right)=\left(r v_{1}, \ldots, r v_{n}\right)
$$

- The vector $0=(0, \ldots, 0)$ is called the zero vector.
- Lots of interesting properties involving +, scalar multiplication and the zero vector contained in Theorem 3.1.1.
- If k_{1}, \ldots, k_{m} are numbers and v_{1}, \ldots, v_{m} are vectors then $k_{1} v_{1}+\ldots k_{m} v_{m}$ is a vector and is called a linear combination of v_{1}, \ldots, v_{m}.
- The norm of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$, written $\|v\|$, is $\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ and there is a corresponding notion of distance $d(u, v)=\|u-v\|$.

Properties of \mathbb{R}^{n}, cont'd

Theorem (3.2.1)

For $v \in \mathbb{R}^{n}$,

- $\|v\| \geq 0$
- $\|v\|=0$ iff $v=0$
- $\|k v\|=|k|\|v\|$

The geometry of \mathbb{R}^{n}

Definition

For two vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} we define the dot product

$$
\left(u_{1}, \ldots, u_{n}\right) \cdot\left(v_{1}, \ldots, v_{n}\right)=u_{1} v_{1}+\ldots+u_{n} v_{n}
$$

and the angle θ between non-zero vectors u and v by

$$
\cos (\theta)=\frac{u \cdot v}{\|u\|\|v\|}
$$

The geometry of \mathbb{R}^{n}, cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, $v \cdot v \geq 0$ and $v \cdot v=0$ iff $v=0$.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^{n},|u \cdot v| \leq\|u|\|\mid v\|$.
- This allows us to prove the triangle inequality: for all vectors $u, v \in \mathbb{R}^{n},\|u+v\| \leq\|u\|+\|v\|$.
- Theorems 3.2.6 and 3.2.7 express in n-space two geometric results: for all vectors $u, v \in \mathbb{R}^{n}$,

$$
\begin{gathered}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \text { and } \\
u \cdot v=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}
\end{gathered}
$$

