The complex plane

- $r = \sqrt{a^2 + b^2}$; this is called the modulus of the complex number z = a + bi and written |z|.
- We saw that $z \cdot \overline{z} = |z|^2$.
- θ is an argument for a + bi and is only determined up to multiples of 2π .
- $a = r \cos(\theta)$ and $b = r \sin(\theta)$ so $z = r(\cos(\theta) + i \sin(\theta))$.

A beautiful formula and a caveat going forward

• Exponentiation can be defined on complex numbers as follows:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

• Consider then that if $\theta = \pi$ then

$$e^{i\pi} + 1 = 0$$

Linear algebra over the complex numbers

Everything we have done in the course to date - linear systems, matrices, determinants, eigenvalues, diagonalization - all goes through **unchanged** if we are using complex numbers instead of real numbers. Going forward it will be considered fair to have complex entries in matrices and to consider complex roots of polynomials.

Definition

- \mathbb{R}^n or real *n*-space is the collection of all *n*-tuples $v = (v_1, v_2, ..., v_n)$ where $v_1, ..., v_n \in \mathbb{R}$. We refer to elements of \mathbb{R}^n as vectors.
- We define addition between vectors in \mathbb{R}^n as follows:

$$(u_1,\ldots,u_n)+(v_1,\ldots,v_n)=(u_1+v_1,\ldots,u_n+v_n)$$

• Scalar multiples of vectors in \mathbb{R}^n is defined, for $r \in \mathbb{R}$ by

$$r(v_1,\ldots,v_n)=(rv_1,\ldots,rv_n)$$

Properties of \mathbb{R}^n

- The vector 0 = (0, ..., 0) is called the zero vector.
- Lots of interesting properties involving +, scalar multiplication and the zero vector contained in Theorem 3.1.1.
- If k₁,..., k_m are numbers and v₁,..., v_m are vectors then k₁v₁ + ... k_mv_m is a vector and is called a linear combination of v₁,..., v_m.
- The norm of a vector v = (v₁,..., v_n), written ||v||, is √v₁² + ... + v_n² and there is a corresponding notion of distance d(u, v) = ||u − v||.

Theorem (3.2.1)

For $v \in \mathbb{R}^n$,

• $||v|| \ge 0$

•
$$||v|| = 0$$
 iff $v = 0$

$$\bullet ||kv|| = |k|||v||$$

Definition

For two vectors $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$ in \mathbb{R}^n we define the dot product

$$(u_1,\ldots,u_n)\cdot(v_1,\ldots,v_n)=u_1v_1+\ldots+u_nv_n$$

and the angle θ between non-zero vectors u and v by

$$\cos(\theta) = \frac{u \cdot v}{||u||||v||}$$

The geometry of \mathbb{R}^n , cont'd

- Theorems 3.2.2 and 3.2.3 have many valuable parts; I draw your attention to the part which says: for a vector v, v ⋅ v ≥ 0 and v ⋅ v = 0 iff v = 0.
- Theorem 3.2.4, the Cauchy-Schwartz inequality says that for all vectors $u, v \in \mathbb{R}^n$, $|u \cdot v| \le ||u||||v||$.
- This allows us to prove the triangle inequality: for all vectors u, v ∈ ℝⁿ, ||u + v|| ≤ ||u|| + ||v||.
- Theorems 3.2.6 and 3.2.7 express in *n*-space two geometric results: for all vectors *u*, *v* ∈ ℝⁿ,

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$
 and
 $u \cdot v = \frac{1}{4}||u + v||^2 - \frac{1}{4}||u - v||^2$