The complex numbers

- Introduce a new quantity, *i*, such that $i^2 = -1$.
- The complex numbers are then all expressions of the form a + bi where *a* and *b* are real numbers.

Operations on the complex numbers

Addition:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Multiplication:

$$(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i$$

Every non-zero complex number has a multiplicative inverse. That is, if z_1 is not zero then the equation, in the unknown z, $z_1z = 1$ has a solution.

The conjugate

٢

- If z = a + bi then \overline{z} , the conjugate of z, is a bi.
- Notice that $z\bar{z} = a^2 + b^2$ so

$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}}$$

The complex plane

- $r = \sqrt{a^2 + b^2}$; this is called the modulus of the complex number z = a + bi and written |z|.
- We saw that $z \cdot \overline{z} = |z|^2$.
- θ is an argument for a + bi and is only determined up to multiples of 2π .

• $a = r \cos(\theta)$ and $b = r \sin(\theta)$ so $z = r(\cos(\theta) + i \sin(\theta))$.

Multiplication and division in polar form

If

$$z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$$
 and $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$

• then
$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$
 and

• if
$$z_2 \neq 0$$
 then $\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).$

• A special case occurs when you compute z^n where $z = r(\cos(\theta) + i\sin(\theta))$:

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

We can also compute nth roots of r(cos(θ) + i sin(θ)); they are

$$r^{1/n}(\cos(\frac{\theta}{n}+\frac{2k\pi}{n})+i\sin(\frac{\theta}{n}+\frac{2k\pi}{n}))$$
 for $k=0,1,\ldots,n-1$

A beautiful formula and a caveat going forward

• Exponentiation can be defined on complex numbers as follows:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

• Consider then that if $\theta = \pi$ then

$$e^{i\pi} + 1 = 0$$

Linear algebra over the complex numbers

Everything we have done in the course to date - linear systems, matrices, determinants, eigenvalues, diagonalization - all goes through **unchanged** if we are using complex numbers instead of real numbers. Going forward it will be considered fair to have complex entries in matrices and to consider complex roots of polynomials.