The complex numbers

- Introduce a new quantity, i, such that $i^{2}=-1$.
- The complex numbers are then all expressions of the form $a+b i$ where a and b are real numbers.

Operations on the complex numbers

- Addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

- Multiplication:

$$
(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i
$$

Multiplicative inverse

Every non-zero complex number has a multiplicative inverse. That is, if z_{1} is not zero then the equation, in the unknown z, $z_{1} z=1$ has a solution.

The conjugate

- If $z=a+b i$ then \bar{z}, the conjugate of z, is $a-b i$.
- Notice that $z \bar{z}=a^{2}+b^{2}$ so
-

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}
$$

The complex plane

- $r=\sqrt{a^{2}+b^{2}}$; this is called the modulus of the complex number $z=a+b i$ and written $|z|$.
- We saw that $z \cdot \bar{z}=|z|^{2}$.
- θ is an argument for $a+b i$ and is only determined up to multiples of 2π.
- $a=r \cos (\theta)$ and $b=r \sin (\theta)$ so $z=r(\cos (\theta)+i \sin (\theta))$.

Multiplication and division in polar form

- If
$z_{1}=r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)$ and $z_{2}=r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)$
- then $z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$ and
- if $z_{2} \neq 0$ then $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$.
- A special case occurs when you compute z^{n} where $z=r(\cos (\theta)+i \sin (\theta)):$

$$
z^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))
$$

- We can also compute $n^{\text {th }}$ roots of $r(\cos (\theta)+i \sin (\theta))$; they are

$$
r^{1 / n}\left(\cos \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)\right) \text { for } k=0,1, \ldots, n-1
$$

A beautiful formula and a caveat going forward

- Exponentiation can be defined on complex numbers as follows:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

- Consider then that if $\theta=\pi$ then

$$
e^{i \pi}+1=0
$$

Linear algebra over the complex numbers
Everything we have done in the course to date - linear systems, matrices, determinants, eigenvalues, diagonalization - all goes through unchanged if we are using complex numbers instead of real numbers. Going forward it will be considered fair to have complex entries in matrices and to consider complex roots of polynomials.

