Our probabilistic model

- We have an initial distribution of objects into n states; we will write $\mathbf{x}(0)=\left(x_{1}(0), x_{2}(0), \ldots, x_{n}(0)\right)$ for the initial distribution; $x(i)$ is the number or proportion of objects in state i.
- At each time step, we assume that an object transitions from state i to state j with probability $q_{j i}$.
- If $\mathbf{x}(k)=\left(x_{1}(k), x_{2}(k), \ldots, x_{n}(k)\right)$ represents the distribution after k steps then we have

$$
x_{j}(k+1)=q_{j 1} x_{1}(k)+q_{j 2} x_{2}(k)+\ldots+q_{j n} x_{n}(k)
$$

for all j and k.

Our probabilistic model, cont'd

- So if Q is the matrix

$$
\left(\begin{array}{cccc}
q_{11} & q_{12} & \ldots & q_{1 n} \\
q_{21} & q_{22} & \ldots & q_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n 1} & q_{n 2} & \ldots & q_{n n}
\end{array}\right)
$$

then we have

$$
\mathbf{x}(k+1)=Q \mathbf{x}(k) \text { and } \mathbf{x}(k)=Q^{k} \mathbf{x}(0)
$$

- A column vector with non-negative entries that sum to 1 is called a probability vector and a matrix whose columns are probability vectors is called a stochastic matrix.
- Notice that our assumption is that Q is a stochastic matrix and the transition model that we have described is call a Markov chain.

Stochastic matrices

- Fact: 1 is an eigenvalue for any stochastic matrix.
- We say that a system is in equilibrium if $Q x=x$ i.e. if x is an eigenvector for the eigenvalue 1 for Q.
- Under very mild assumptions on a stochastic matrix Q, Q will have n distinct eigenvalues and all but 1 will have absolute value less than 1.
- Under these weak assumptions, if one starts with any probability vector \mathbf{x} and \mathbf{v} is the probability vector corresponding to the eigenvalue 1 then $\lim _{n \rightarrow \infty} Q^{n} \mathbf{x}=\mathbf{v}$.

The complex numbers

- Introduce a new quantity, i, such that $i^{2}=-1$.
- The complex numbers are then all expressions of the form $a+b i$ where a and b are real numbers.

Operations on the complex numbers

- Addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

- Multiplication:

$$
(a+b i) \cdot(c+d i)=(a c-b d)+(a d+b c) i
$$

Multiplicative inverse

Every non-zero complex number has a multiplicative inverse. That is, if z_{1} is not zero then the equation, in the unknown z, $z_{1} z=1$ has a solution.

The conjugate

- If $z=a+b i$ then \bar{z}, the conjugate of z, is $a-b i$.
- Notice that $z \bar{z}=a^{2}+b^{2}$ so
-

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}
$$

The complex plane

- $r=\sqrt{a^{2}+b^{2}}$; this is called the modulus of the complex number $z=a+b i$ and written $|z|$.
- We saw that $z \cdot \bar{z}=|z|^{2}$.
- θ is an argument for $a+b i$ and is only determined up to multiples of 2π.
- $a=r \cos (\theta)$ and $b=r \sin (\theta)$ so $z=r(\cos (\theta)+i \sin (\theta))$.

