Diagonalizability: a special case

Diagonalizability

- We say that a matrix is diagonalizable if it is similar to a diagonal matrix.
- If *A* is *n* × *n* and the characteristic equation of *A* has *n* distinct roots then *A* is diagonalizable.

An algorithm for diagonalizing: a special case

If *A* is $n \times n$ and has *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ then to find a diagonal matrix similar to *A*, do the following:

- for each *i* = 1,... *n*, find a non-zero column vector *v_i* which is an eigenvector for λ_i i.e. find *v_i* such that *Av_i* = λ_i*v_i*.
- Let *P* be the matrix formed by placing v_i in the i^{th} column.
- Then P is invertible and P⁻¹AP = D where D is the diagonal matrix with entry λ_i in the ith place on the diagonal.

Our probabilistic model

- We have an initial distribution of objects into *n* states; we will write $\mathbf{x}(0) = (x_1(0), x_2(0), \dots, x_n(0))$ for the initial distribution; x(i) is the number or proportion of objects in state *i*.
- At each time step, we assume that an object transitions from state *i* to state *j* with probability q_{ii}.
- If x(k) = (x₁(k), x₂(k), ..., x_n(k)) represents the distribution after k steps then we have

$$x_j(k+1) = q_{j1}x_1(k) + q_{j2}x_2(k) + \ldots + q_{jn}x_n(k)$$

for all j and k.

Our probabilistic model, cont'd

• So if Q is the matrix

$$\begin{pmatrix} q_{11} & q_{12} & \dots & q_{1n} \\ q_{21} & q_{22} & \dots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \dots & q_{nn} \end{pmatrix}$$

then we have

$$\mathbf{x}(k+1) = Q\mathbf{x}(k)$$
 and $\mathbf{x}(k) = Q^k \mathbf{x}(0)$

- A column vector with non-negative entries that sum to 1 is called a probability vector and a matrix whose columns are probability vectors is called a stochastic matrix.
- Notice that our assumption is that Q is a stochastic matrix and the transition model that we have described is call a Markov chain.

- Fact: 1 is an eigenvalue for any stochastic matrix.
- We say that a system is in equilibrium if Qx = x i.e. if x is an eigenvector for the eigenvalue 1 for Q.
- Under very mild assumptions on a stochastic matrix *Q*, *Q* will have *n* distinct eigenvalues and all but 1 will have absolute value less than 1.
- Under these weak assumptions, if one starts with any probability vector **x** and **v** is the probability vector corresponding to the eigenvalue 1 then lim_{n→∞} Qⁿ**x** = **v**.