Eigenvalues and eigenvectors

Definition

Suppose that A is a square matrix and for a number λ and non-zero column vector $x, A x=\lambda x$. Then we call λ an eigenvalue for A and x an eigenvector.

Characteristic equation

For an $n \times n$ matrix A, the equation $\operatorname{det}(\lambda I-A)=0$ where λ is a variable is called the characteristic equation for the matrix A. It is always a polynomial of degree n.

Similarity

Definition

- We say that two square matrices A and B are similar if there is an invertible matrix P such that $A=P^{-1} B P$.
- We say that a matrix is diagonalizable if it is similar to a diagonal matrix.

Similarity properties

If two matrices are similar then they have the same determinant, trace, characteristic polynomial and eigenvalues.

Diagonalizability: a special case

Theorem

If A is $n \times n$ and the characteristic equation of A has n distinct roots then A is diagonalizable.

An algorithm for diagonalizing: a special case

If A is $n \times n$ and has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then to find a diagonal matrix similar to A, do the following:

- for each $i=1, \ldots n$, find a non-zero column vector v_{i} which is an eigenvector for λ_{i} i.e. find v_{i} such that $A v_{i}=\lambda_{i} v_{i}$.
- Let P be the matrix formed by placing v_{i} in the $i^{\text {th }}$ column.
- Then P is invertible and $P^{-1} A P=D$ where D is the diagonal matrix with entry λ_{i} in the $i^{\text {th }}$ place on the diagonal.

The test

- The first test is scheduled for Oct. 10 at 10:30 am (that is class time). The test will be 50 minutes.
- If your surname is in the range $\mathrm{A}-\mathrm{O}$, you write the test in T28/001; if your surname is in the range P - Z you write in T29/101.
- The test will be multiple choice; bring an HB pencil. McMaster approved Casio fx-991MS or MSplus calculators are allowed but no other aids.
- Please bring your ID card with you to the test.
- The test will cover sections 1.1-1.8 and 2.1-2.3.
- I will post supplementary questions and a practice test.
- Matt Luther will run a review session on Thursday, Oct. 9 from 5:30-7:30 in HH 302. Come prepared with questions and/or send him questions ahead of time.
- There will be no Friday morning tutorial on Oct. 10.

