Definition

Suppose that *A* is a square matrix and for a number λ and non-zero column vector *x*, $Ax = \lambda x$. Then we call λ an eigenvalue for *A* and *x* an eigenvector.

Characteristic equation

For an $n \times n$ matrix A, the equation $det(\lambda I - A) = 0$ where λ is a variable is called the characteristic equation for the matrix A. It is always a polynomial of degree n.

Definition

- We say that two square matrices A and B are similar if there is an invertible matrix P such that $A = P^{-1}BP$.
- We say that a matrix is diagonalizable if it is similar to a diagonal matrix.

Similarity properties

If two matrices are similar then they have the same determinant, trace, characteristic polynomial and eigenvalues.

Theorem

If A is $n \times n$ and the characteristic equation of A has n distinct roots then A is diagonalizable.

An algorithm for diagonalizing: a special case

If *A* is $n \times n$ and has *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ then to find a diagonal matrix similar to *A*, do the following:

- for each *i* = 1,... *n*, find a non-zero column vector *v_i* which is an eigenvector for λ_i i.e. find *v_i* such that *Av_i* = λ_i*v_i*.
- Let *P* be the matrix formed by placing v_i in the i^{th} column.
- Then *P* is invertible and $P^{-1}AP = D$ where *D* is the diagonal matrix with entry λ_i in the *i*th place on the diagonal.

The test

- The first test is scheduled for Oct. 10 at 10:30 am (that is class time). The test will be 50 minutes.
- If your surname is in the range A O, you write the test in T28/001; if your surname is in the range P - Z you write in T29/101.
- The test will be multiple choice; bring an HB pencil. McMaster approved Casio fx-991MS or MSplus calculators are allowed but no other aids.
- Please bring your ID card with you to the test.
- The test will cover sections 1.1 1.8 and 2.1 2.3.
- I will post supplementary questions and a practice test.
- Matt Luther will run a review session on Thursday, Oct. 9 from 5:30 - 7:30 in HH 302. Come prepared with questions and/or send him questions ahead of time.
- There will be no Friday morning tutorial on Oct. 10.