Some properties of the determinant

- If E is an elementary matrix then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.
- (Theorem 2.3.3) A is invertible iff $\operatorname{det}(A) \neq 0$.
- (Theorem 2.3.4) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
- (Theorem 2.3.5) If A is invertible then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

The adjoint

Definition

Suppose that A is a square matrix then the matrix of cofactors of A is

$$
\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right)
$$

Its transpose is called the adjoint of A and written $\operatorname{adj}(A)$.

Theorem (2.3.6)

If A is invertible then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Cramer's rule

Theorem (2.3.7)

Suppose A is invertible. Then the solution to $A x=b$ is

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where A_{j} is the matrix obtained by replacing the $j^{\text {th }}$ column of A by b.

The test

- The first test is scheduled for Oct. 10 at 10:30 am (that is class time). The test will be 50 minutes.
- If your surname is in the range $\mathrm{A}-\mathrm{O}$, you write the test in T28/001; if your surname is in the range P - Z you write in T29/101.
- The test will be multiple choice; bring an HB pencil. McMaster approved Casio fx-991MS or MSplus calculators are allowed but no other aids.
- Please bring your ID card with you to the test.
- The test will cover sections 1.1-1.8 and 2.1-2.3.
- I will post supplementary questions and a practice test.
- Matt Luther will run a review session on Thursday, Oct. 9 from 5:30-7:30 in HH 302. Come prepared with questions and/or send him questions ahead of time.
- There will be no Friday morning tutorial on Oct. 10.

