Some easy facts

- If A is a triangular matrix then $\operatorname{det}(A)$ is the product of the diagonal entries.
- If a square matrix has a row or column which is entirely zero then its determinant is 0 .
- If A is a square matrix then $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- If B is a square matrix obtained by multiplying a row or column of A by k then $\operatorname{det}(B)=k \operatorname{det}(A)$.
- If B is obtained from A by exchanging two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Slightly more work

The effect of adding a multiple of one row to another

If a matrix B is obtained from A by adding a multiple of one row to another then $\operatorname{det}(B)=\operatorname{det}(A)$.

An efficient algorithm for finding the determinant
Start with a square matrix A and row reduce it to a triangular matrix B using only row changes and adding multiples of one row to another. Then $\operatorname{det}(A)$ will be $\operatorname{det}(B)$ multiplied by $(-1)^{N}$ where N is the number of row changes you did and $\operatorname{det}(B)$ can be determined by multiplying the diagonal elements of B.

Determinants of elementary matrices

Corollary (Theorem 2.2.4)

- If E is an elementary matrix obtained from I by multiplying a row by k then $\operatorname{det}(E)=k$.
- If E is an elementary matrix obtained from I by interchanging two rows then $\operatorname{det}(E)=-1$.
- If E is an elementary matrix obtained from I by adding a multiple of one row to another then $\operatorname{det}(E)=1$.

Some properties

- If E is an elementary matrix then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.
- (Theorem 2.3.3) A is invertible iff $\operatorname{det}(A) \neq 0$.
- (Theorem 2.3.4) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
- (Theorem 2.3.5) If A is invertible then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

The adjoint

Definition

Suppose that A is a square matrix then the matrix of cofactors of A is

$$
\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right)
$$

Its transpose is called the adjoint of A and written $\operatorname{adj}(A)$.

Theorem (2.3.6)

If A is invertible then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Cramer's rule

Theorem (2.3.7)

Suppose A is invertible. Then the solution to $A x=b$ is

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where A_{j} is the matrix obtained by replacing the $j^{\text {th }}$ column of A by b.

