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Some easy facts

If A is a triangular matrix then det(A) is the product of the
diagonal entries.
If a square matrix has a row or column which is entirely
zero then its determinant is 0.
If A is a square matrix then det(A) = det(AT ).
If B is a square matrix obtained by multiplying a row or
column of A by k then det(B) = kdet(A).
If B is obtained from A by exchanging two rows then
det(B) = −det(A).
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Slightly more work

The effect of adding a multiple of one row to another
If a matrix B is obtained from A by adding a multiple of one row
to another then det(B) = det(A).

An efficient algorithm for finding the determinant

Start with a square matrix A and row reduce it to a triangular
matrix B using only row changes and adding multiples of one
row to another. Then det(A) will be det(B) multiplied by (−1)N

where N is the number of row changes you did and det(B) can
be determined by multiplying the diagonal elements of B.
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Determinants of elementary matrices

Corollary (Theorem 2.2.4)
If E is an elementary matrix obtained from I by multiplying
a row by k then det(E) = k.
If E is an elementary matrix obtained from I by
interchanging two rows then det(E) = −1.
If E is an elementary matrix obtained from I by adding a
multiple of one row to another then det(E) = 1.
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Some properties

If E is an elementary matrix then det(EA) = det(E)det(A).
(Theorem 2.3.3) A is invertible iff det(A) 6= 0.
(Theorem 2.3.4) det(AB) = det(A)det(B).

(Theorem 2.3.5) If A is invertible then det(A−1) =
1

det(A)
.
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The adjoint

Definition
Suppose that A is a square matrix then the matrix of cofactors
of A is 

C11 C12 . . . C1n
C21 C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . Cnn


Its transpose is called the adjoint of A and written adj(A).

Theorem (2.3.6)
If A is invertible then

A−1 =
1

det(A)
adj(A)
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Cramer’s rule

Theorem (2.3.7)
Suppose A is invertible. Then the solution to Ax = b is

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)

where Aj is the matrix obtained by replacing the j th column of A
by b.
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