Determinants

Definition

For an $n \times n$ matrix A, we define

- The $i j$ minor of $A, M_{i j}$, is the determinant of the square matrix obtained from A by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A.
- The $i j$ cofactor of A is $(-1)^{i+j} M_{i j}$.
- The cofactor expansion along the $i^{\text {th }}$ row is

$$
a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

- The cofactor expansion along the $j^{t h}$ column is

$$
a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j}
$$

Some easy facts

Theorem

Any cofactor expansion of a square matrix A, along any row or any column, always yields the same number and we call that number the determinant of A.

- If A is a triangular matrix then $\operatorname{det}(A)$ is the product of the diagonal entries.
- If a square matrix has a row or column which is entirely zero then its determinant is 0 .
- If A is a square matrix then $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- If B is a square matrix obtained by multiplying a row or column of A by k then $\operatorname{det}(B)=k \operatorname{det}(A)$.
- If B is obtained from A by exchanging two rows then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Slightly more work

The effect of adding a multiple of one row to another

If a matrix B is obtained from A by adding a multiple of one row to another then $\operatorname{det}(B)=\operatorname{det}(A)$.

An efficient algorithm for finding the determinant
Start with a square matrix A and row reduce it to a triangular matrix B using only row changes and adding multiples of one row to another. Then $\operatorname{det}(A)$ will be $\operatorname{det}(B)$ multiplied by $(-1)^{N}$ where N is the number of row changes you did and $\operatorname{det}(B)$ can be determined by multiplying the diagonal elements of B.

Determinants of elementary matrices

Corollary (Theorem 2.2.4)

- If E is an elementary matrix obtained from I by multiplying a row by k then $\operatorname{det}(E)=k$.
- If E is an elementary matrix obtained from I by interchanging two rows then $\operatorname{det}(E)=-1$.
- If E is an elementary matrix obtained from I by adding a multiple of one row to another then $\operatorname{det}(E)=1$.

