Determinants

For an n x n matrix A, we define

@ The ijj minor of A, Mj;, is the determinant of the square
matrix obtained from A by deleting the i row and j
column of A.

@ The jj cofactor of Ais (—1)"*/M;.
@ The cofactor expansion along the i row is

ai1Cit + apCiz + ... + ainCin
@ The cofactor expansion along the j column is

a1jC1j + anggj + ...+ a,,anj
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Some easy facts

Any cofactor expansion of a square matrix A, along any row or
any column, always yields the same number and we call that
number the determinant of A.

@ If Ais a triangular matrix then det(A) is the product of the
diagonal entries.

@ If a square matrix has a row or column which is entirely
zero then its determinant is 0.

e If Ais a square matrix then det(A) = det(AT).

@ If Bis a square matrix obtained by multiplying a row or
column of A by k then det(B) = kdet(A).

@ If B is obtained from A by exchanging two rows then
det(B) = —det(A).
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Slightly more work

The effect of adding a multiple of one row to another

If a matrix B is obtained from A by adding a multiple of one row
to another then det(B) = det(A).

An efficient algorithm for finding the determinant

Start with a square matrix A and row reduce it to a triangular
matrix B using only row changes and adding multiples of one
row to another. Then det(A) will be det(B) multiplied by (—1)N
where N is the number of row changes you did and det(B) can
be determined by multiplying the diagonal elements of B.
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Determinants of elementary matrices

Corollary (Theorem 2.2.4)
@ If E is an elementary matrix obtained from | by multiplying
a row by k then det(E) = k.
@ If E is an elementary matrix obtained from | by
interchanging two rows then det(E) = —1.
@ If E is an elementary matrix obtained from | by adding a
multiple of one row to another then det(E) = 1.
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