Linear algebra, Math 1B3

Bradd Hart

Sept. 5, 2014

Short-term outline

- Review linear equations, section 1.1
- Introduce Gaussian elimination, section 1.2
- Introduce matrices and matrix algebra, sections 1.3-1.4

Linear equations

- A linear equation in n unknowns or variables has the form

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where the x_{i} 's are the unknowns and the a_{i} 's and the b are numbers.

- We may use letters like x, y or z for the variables when we have only a few.
- If when you substitute $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}$ into the linear equation above and the left hand side equals the right hand side, we say that this is a solution to that linear equation. We call $\left(s_{1}, \ldots, s_{n}\right)$ an ordered n-tuple.

Systems of linear equations

A finite set of linear equations is called a system of linear equations; in general a linear system looks like this:

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \ldots & +a_{1 n} x_{n}= \\
a_{21} x_{1}+b_{22} x_{2}+ & \ldots & +a_{2 n} x_{n}= \\
\vdots & \ddots & \vdots \\
a_{21} x_{1}+a_{m 2} x_{2}+ & \ldots & +a_{m n} x_{n}= \\
a_{m}=b_{m}
\end{array}
$$

A solution to a linear system is an ordered n-tuple which is simultaneously a solution to each equation.

Augmented matrices

For the linear system

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \ldots & +a_{1 n} x_{n}= \\
a_{21} x_{1}+b_{22} x_{2}+ & \ldots & +b_{2 n} x_{n}= \\
\vdots & \ddots & \vdots \\
\vdots & b_{2} \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \ldots & +a_{m n} x_{n}= \\
& b_{m}
\end{array}
$$

the augmented matrix is

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \ddots & \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

Elementary row operations

To solve a linear system one performs a series of algebraic operations:

- Multiply an equation by a non-zero constant
- Add a constant multiple of one equation to another
- Interchange equations

The main fact is that doing these operations doesn't change the set of solutions of the linear system.

The corresponding elementary row operations on an augmented matrix are:

- Multiply a row by a non-zero constant
- Add a constant multiple of one row to another
- Interchange two rows

