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The talk will be divided into four sections.

Section 1 Historical background.

Section 2 Uniform metastability

Section 3 Metastable convergence theorems.

Section 4 Metastability and compactness.



Ongoing research in collaboration with Eduardo Duenez (supported
by NSF grant DMS-1500615)

The last result is part of ongoing research with Eduardo Dueñez
and Xavier Caicedo (partially supported by NSF grant
DMS-11445110).



A measure preserving system is a structure of the form
(X ,X, µ,T ), where (X ,X, µ) is a probability space and
T : (X ,X, µ)→ (X ,X, µ) is a probability space isomorphism. In
particular,

I T is invertible,

I T and T−1 are measurable,

I µ(T nE ) = µ(T (E )) for every E ∈ X and every integer n.

We are interested in recurrence properties of sets E ∈ X, or
functions f ∈ Lp(X ,X, µ).
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Poincaré recurrence theorem
Let(X ,X, µ,T ) be a measure-preserving system, and let E ∈ X be
such that µ(E ) > 0. Then,

lim sup
n→∞

µ(E ∩ T nE ) ≥ µ(E )2.

In particular, µ(E ∩ T nE ) > 0, for infinitely many n.



Von Neumann ergodic theorem (1932)

Let U : H → H be a unitary operator on a separable Hilbert space
H. Then the limit

lim
N→∞

1

N

N−1∑
n=0

Unv

exists for every v ∈ H. Moreover, the limit equals π(v), where π is
the orthogonal projection from H onto the closed subspace
{v ∈ H : Uv = v} consisting of all U-invariant vectors.
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Corollary (Mean ergodic theorem)

Let (X ,X, µ,T ) be a measure-preserving system. Then the limit of
averages

lim
N→∞

1

N

N−1∑
n=0

T nf

exists for every f ∈ L2(X ,X, µ)



Furstenberg’s proof of Szemerédi’s theorem (1977) and its
subsequent refinement by Furstenberg and Katznelson (1978)
suggested at least three possible directions of generalization:

1. Replacing n 7→ T n by more general group actions, (i.e., Z by
other groups),

2. Considering polynomial, rather than linear actions,

3. Establishing uniform bounds for convergence.

For this talk we will restrict our attention to (3). Let us first start
with a well-known example:
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Furstenberg multiple recurrence theorem

Theorem (Furstenberg, 1977)

Let (X ,X, µ,T ) be a measure-preserving system. Then for every
set E of positive measure and every positive integer k there exists
n > 0 such that

E ∩ T−nE ∩ . . . ∩ T−(k−1)nE 6= ∅.



Uniform Furstenberg multiple recurrence theorem

Theorem (Bergelson, Host, McCutcheon, Parreau, 2000)

For every positive integer k and every δ > 0 there exists ε(k , δ) > 0
with the following property: For every measure-preserving system
(X ,X, µ,T ) and every measurable set E with µ(E ) ≥ δ,

1

N

N−1∑
k=0

µ(E ∩ T nE ∩ . . . ∩ T (k−1)nE ) ≥ ε(k , δ),

for all N ≥ 1.



The norm convergence problem for several commuting
transformations

Theorem (Tao, 2007)

If (X ,X, µ) is a probability space and T1, . . . ,Tk : X → X are
commuting measure-preserving transformations, then for any
bounded measurable functions f1, . . . , fk : X → R, the multiple
averages

1

N

N−1∑
n=0

T n
1 f1 . . .T

n
k fk

converge in the L2(X ) norm topology (and hence in probability) as
N →∞.



I The case k = 1 is Von Neumann’s mean ergodic theorem

I The case k = 2: Conze and Lesigne (1983)

I The case for higher l was established by Frantzikinakis and
Kra (2005) under additional hypothesis for the operators Ti .

I The case Ti = T i : Host-Kra (2005), Ziegler (2007)



Remark: Tao’s argument does not establish a formula for the limit
of the sequence of averages. He rather proves that the sequence
converges indirectly, by showing that is Cauchy in L2(X ).

For this, he introduces the concept of metastability of sequences
and metastable convergence. A crucial component of his proof is
his Metastable Dominated Convergence Theorem.

The concept of metastability has been studied from the perspective
of computable analysis by Avigad-Dean-Rute, Avigad-Towsner,
Kohlenbach, Kohlenbach-Leustea, Kohlenbach-Safarik,
Körnlein-Kohlenbach, and Schade-Kohlenbach.
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Walsh’s convergence theorem

Theorem (Walsh, 2012)

Let (X , µ) be a measure space with a measure-preserving action of
a nilpotent group G . Let g1, . . . , gk : Z→ G be polynomial

sequences in G (i.e. each gi is of the form gi (n) = a
pi,1(n)
i ,1 . . . a

pi,j (n)
i ,j

for some ai ,1, . . . , ai ,j ∈ G and polynomials pi ,1, . . . , pi ,j : Z→ Z.
Then for any f1, . . . , fk ∈ L∞(X , µ), the averages

1

N

N−1∑
n=1

(g1(n)f1) . . . (gk(n)fk)

converge in L2(X , µ) norm as N →∞, where
g(n)f (x) := f (g(n)−1x).



Remarks:

I Walsh’s argument, like Tao’s, relies heavily on metastability.

I Nilpotence plays a crucial role in Walsh’s proof. A key part of
his argument uses Leibman’s theory of polynomials maps of
groups (1998–2002), which relies heavily on nilpotence.
Nilpotence is widely regarded as the non plus ultra condition
ensuring L2-convergence of multiple ergodic averages.



Definitions: Samplings and metastability rates

Definition
A sampling of the totally ordered set (N, <) is a function

η : N→ N

such that η(n) ≥ n for all n ∈ N. The set of all samplings of N will
be denoted Smpl(N).

To each sampling η there corresponds the collection of intervals
[n, η(n)] ⊂ N, one for each n ∈ N.

Definition
A rate of metastability is a family

E• = (Eε,η) ⊂ N

of natural numbers, one for each ε > 0 and η ∈ Smpl(N).
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Metastability for sequences with a given rate

Definition ([Tao])

For each sampling η and ε > 0 let Eε,η ∈ N be given.

I A sequence (an)n∈N in a metric space (X , d) is
[ε, η]-metastable (with bound Eε,η) if there exists n (no larger
than Eε,η) such that

d(am, am′) ≤ ε for all m,m′ ∈ [n, η(n)].

I A sequence is metastable (with rate E•) if it is
[ε, η]-metastable (with bound Eε,η) for every sampling η and
all ε > 0.

Remarks

I In general, metastability (with specified rate) is a relaxation of
the Cauchy property by restricting to finite sub-tails of (an).

I When no rates are specified, we have:
I (an) is metastable ⇔ (an) is a Cauchy sequence.
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A Uniform Metastability Principle (UMP)

Proposition (Uniform Metastability Principle [Duenez-I])

Let T be a uniform theory in a signature L such that:

I L names a sort interpreted as a (discrete) linearly ordered set
(N, <) elementarily extending (N, <) in models of T , and

I L includes a symbol a(·) for a function N→ R.

Then, the following properties are equivalent:

1. All classical sequences (a(n) : n ∈ N) obtained by interpreting
a(·) in models of the theory T are Cauchy.

2. There exists a collection E• = (Eε,η) of metastability rates
that applies uniformly to all such sequences.

Furthermore, when these properties hold, the rate E• depends only
on the theory T .



Some remarks about the UMP

I The UMP follows directly from the compactness theorem for
first-order continuous logic.

I It holds for any logic for metric structures that is countably
compact.

I N can be replaced by any directed set (hence it holds for nets,
rather than just sequences).

I It essentially states that metastable convergence with a
prescribed rate is the only way to capture convergence in
first-order continuous logic.

Moreover, the UMP implies the following metatheorem:

“Whenever a theorem about convergence of
sequences applies to a class of complete metric structures
axiomatizable in continuous first-order logic, then the
theorem admits a refinement as a statement about
uniformly metastable convergence.”

We now switch to applications of this metatheorem.
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DCT structures (Dominated Convergence Theorem)

Let TDCT be the theory (in a suitable signature L) of all structures
of the form M = (R, (N, <), (X , µ), (L∞(X ),

∫
), ϕ•), where

I (N, <) is the totally ordered set of natural numbers,

I (X , µ) is a finite measure space,

I ϕ• : N→ B1(L∞(X )) is a sequence (ϕn)n∈N in the unit ball
of L∞(X ).

Definition
A DCT structure is a countably saturated model
M = (R, (N, <), (X , µ), (LX ,

∫
), ϕ•) of TDCT.

Remark
For all practical purposes (by proxy of a construction analogous to
that of Loeb measure in nonstandard analysis) ℵ1-saturation
implies that the sort (X , µ,

∫
) of a DCT structure is a classical,

countably additive probability space and
∫

is classical integration
of functions f ∈ LX .



Tao’s Metastable Dominated Convergence Theorem
Theorem (Dominated Convergence Theorem (DCT))

Let M = (R, (N, <), (X , µ), (LX ,
∫

), ϕ•) be a DCT structure. If
(ϕn(x)) is Cauchy for almost all x ∈ X, then (

∫
ϕn(x)dµ(x))n∈N is

Cauchy.
Since DCT structures are bona fide measure spaces endowed with
classical integration, the usual proof of DCT applies.
Corollary (Metastable Dominated Convergence Theorem [Tao,
2008)

] For every metastability rate E• there exists another metastability

rate Ẽ• such that whenever E• is a metastability rate for the
sequences (ϕn(x)) in [−1, 1], for almost all x in a finite measure

space (X , µ), then Ẽ• is a metastability rate for
( ∫

ϕn(x)dµ(x)
)
.

Proof.
Extend TDCT to T ′ by adding the first-order axioms stating that
(ϕn(x)) is E•-metastable for almost all x . Every model M of T ′

embeds into a (countably saturated) DCT structure for which

DCT holds. By UMP, some metastability rate Ẽ• must apply to all
sequences

( ∫
ϕn(x)dµ(x)

)
.
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space (X , µ), then Ẽ• is a metastability rate for
( ∫

ϕn(x)dµ(x)
)
.

Proof.
Extend TDCT to T ′ by adding the first-order axioms stating that
(ϕn(x)) is E•-metastable for almost all x . Every model M of T ′

embeds into a (countably saturated) DCT structure for which

DCT holds. By UMP, some metastability rate Ẽ• must apply to all
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Metastable Mean Ergodic Theorem

Theorem (Mean Ergodic Theorem (von Neumann 1932))

Given a unitary transformation U on a Hilbert space H and a point
x ∈ H, the sequence

AVN(x) =
1

n

N−1∑
k=0

Unx (n ∈ N)

of ergodic averages converges as N →∞.

Corollary (Metastable Mean Ergodic Theorem)

There exists a universal metastability rate E• such that the
sequence of ergodic averages (AVN(x)) of any point x in the unit
ball of any Hilbert space H under any unitary operator U on H is
E•-metastable.



Ergodic almost-everywhere convergence

Proposition (Metastable Birkhoff ergodic theorem)

For every δ > 0 there exists a rate E
(δ)
• such that if T is measure-

preserving on a probability space (X , µ), then for every
measurable f such that ‖f ‖∞ ≤ 1 there exists measurable Y ⊂ X
such that

I µ(X \ Y ) ≤ δ, and

I
(

1
n

∑
j<n f ◦ T j(y)

)
n∈N converges pointwise with metastable

rate E
(δ)
• for all y ∈ Y .



Remarks

I Apart from the dependence on δ, the rate E
(δ)
• is completely

universal (independent of (X , µ,T )).
I This should be contrasted with the almost-uniform

convergence implied by Egorov’s theorem, where the rates of
uniform convergence depend not only on δ but also on the
transformation T .

I In this formulation, it is necessary to impose a bound on ‖f ‖∞
(not merely on ‖f ‖1).



Metastability and compactness

As we have seen the Uniform Metastability Principle (UMP) is a
consequence of the compactness of first-order continuous logic.
In fact, it holds in any logic for metric structures that satisfies
countable compactness.

Question (Tao)

Is there a precise connection between the metastability and
compactness?



PC-classes

Let C be a class of L-structures.

C is said to be a PC-class if C can be axiomatized by a single
sentence in some signature L′ ⊇ L.

Equivalently, C is a PC-class if C can be axiomatized by an
existential second-order L-sentence.

This definition applies to any logic: Given a logic L one can
consider the PC-classes of L .

Fact
If L is a compact logic, then the logic of existential second-order
sentences of L inherits compactness from L.
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An L-structure M is RPC∆-characterizable if there exists a
predicate R and an existential second-order L ∪ {R}-theory T such
that the restriction of any model of T to the predicate R is
isomorphic to M.



Theorem (X. Caicedo, E. Duenez, I)

Let L be a logic that is not countably compact. If M is any a
metric structure of cardinality less than the first measurable
cardinal, then (M, a)a∈M is RPC∆-caracterizable in L .

This allows us to show that

Uniform Metastability Principle ⇔ Compactness.
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2. If L is not countably compact, then UMP fails for
RPC∆(L ).
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