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Abstract

In this investigation we develop and validate a computational method for recon-
structing constitutive relations based on measurement data and applicable to prob-
lems arising in nonequilibrium thermodynamics and continuum mechanics. This
parameter estimation problem is solved as PDE–constrained optimization using a
gradient–based technique in the optimize–then–discretize framework. The principal
challenge is that the control variable (i.e., the relation characterizing the constitu-
tive property) is not a function of the independent variables in the problem, but of
the state (dependent) variable. The proposed method allows one to reconstruct a
smooth constitutive relation defined over a broad range of the dependent variable.
It relies on three main ingredients: a computationally friendly expression for the
cost functional gradient, Sobolev gradients used in lieu of discontinuous L2 gradi-
ents, and a systematic technique for shifting the identifiability region. Performance
of this approach is illustrated by the reconstruction of the temperature dependence
of the thermal conductivity in a one–dimensional model problem.

Key words: parameter estimation, constitutive relations, optimization,
nonequilibrium thermodynamics, continuum mechanics, adjoint analysis
PACS: 47.10.ab, 05.70.Ln, 02.30.Zz

1 Introduction

Reliable mathematical and computational modelling of physical processes depends on our knowl-
edge of the relevant properties of the materials involved. Obtaining such properties is particu-
larly challenging when the materials are of a less common type. For example, when investigating
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thermo–fluid phenomena occurring in liquid metals, one needs to know the coefficients of vis-
cosity, thermal diffusivity, surface tension, etc., for the specific alloys. This task is often made
more difficult by the fact that these coefficients tend to depend on the temperature in a com-
plicated way. As a result, precise information about such material properties is rarely available,
except for some common materials. The goal of this investigation is to propose and validate
a computational method that will allow one to reconstruct such material properties based on
some measurements available for a particular process (e.g., heat conduction) and a particular
material. The specific motivation for this investigation comes from our research on optimization
of multiphysics phenomena involved in advanced welding processes [1], where accurate data con-
cerning material properties is quite important. While our intended applications concern more
complicated systems, for the sake of clarity in this paper our approach is developed and validated
based on a fairly simple model problem.

In principle, as regards the inverse problem of parameter estimation, one can consider two
distinct formulations:

• material properties depending on the space variable x (i.e., the independent variable in the
problem), and

• material properties depending on the state variable T (i.e., the dependent variable in the
problem).

Problems of the first type have in fact received quite a lot of attention in the literature, and
we refer the reader to the monographs [2] and [3,4] for surveys of the mathematical and more
applied aspects of these problems, respectively. For example, as the reconstructed parameters are
functions of the space variables, these problems represent the foundation of numerous imaging
techniques in medical diagnostics, such as, e.g., X–ray tomography [4], as well as in geosciences
[5]. Problems of this type are at least in principle relatively well understood, and there exist
several established methods for their solution.

In this paper our focus will be exclusively on parameter estimation problems of the second type
in which we want to determine the material properties as a function of the state (i.e., dependent)
variable, e.g., the temperature T , rather than the position in space (the independent variable).
In other words, we seek a relationship between the material property and the state variable that
holds uniformly at every point x of the domain Ω in which the problem is formulated. This
problem seems to have received less attention in the literature than the problem of estimating
the space–dependent material properties. Foundations of an optimization–based approach to the
solution of this problem were laid in the work of Chavent and Lemonnier [6] (which to the best
of our knowledge never appeared in the English language), where the authors established the
existence of solutions to the problem and derived expressions for the gradient of the least–squares
error functional. They also showed the results of computations in which the cost functional
gradients were obtained based on a suitably–defined adjoint system. Similar problems were
also considered by Alifanov et al. [7,8], except that in their formulation the dependence of the
material property on the state variable was assumed in the form of a spline interpolant, effectively
resulting in a finite–dimensional optimization problem. A computational approach also based
on a least–squares error functional and a linearization of the problem via a suitable change
of variables was considered by Tai and Kärkkäinen [9]. An alternative technique utilizing the
adjoint equations, but without making use of the error functional, was proposed by DuChateau
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et al. [10], whereas Janicki and Kindermann studied a method combining Green’s functions
and Landweber’s iteration applied to the parameter–to–measurements map [11]. A different
approach, based on the “equation error method”, was pursued by Hanke and Scherzer [12] who
also considered a discrete formulation. Some mathematical aspects of the inverse problem of
determining the state–dependent diffusion coefficients were addressed by Kügler [13,14] who
investigated the Tikhonov regularization, by Neubauer [15] who studied regularization using
adaptive grids and also by DuChateau et al. [16,17]. Some analytical results concerning this
problem posed in an infinite domain were also reported in [18]. In the present investigation we
consider an optimization–based approach to estimation of a state–dependent material property
and the main contribution of our work are as follows

• we provide a novel expression for the gradient of the cost functional which is more computa-
tionally tractable than the formula originally derived in [6],

• recognizing that in the standard formulation (based on the L2 inner products) the cost func-
tional gradients may be discontinuous, we develop an approach ensuring a required degree of
smoothness of the reconstructed material properties, and

• noting that in a given problem reconstruction is normally limited to the corresponding “identi-
fiability region” (defined below), we propose a systematic experimental design procedure that
allows one to tune inputs to the system, so that the constitutive relation can be reconstructed
over a broader range of the state variable.

While adjoint analysis is now routinely used to solve partial differential equation (PDE)–
constrained optimization problems [19], we emphasize that the structure of the gradients in
the present problem is in fact quite different from what is encountered in typical problems [20].
The reason is that the optimization variable is a function of the dependent, rather than inde-
pendent, variables in the problem. We also add that, in contrast to the results reported in some
of the references quoted above, our approach is formulated in the “optimize–then–discretize”
framework, i.e., while we ultimately discretize the problem for the purpose of a numerical solu-
tion, our optimality conditions and the cost functional gradients are derived in the continuous
(PDE) setting. As a consequence, the main constituents of our approach are independent of the
specific discretization used.

In order to ensure applicability of our proposed approach to a broad array of problems in contin-
uum mechanics and nonequilibrium thermodynamics, we formulate it in terms of reconstruction
of constitutive relations. Thus, we will consider optimal reconstruction of isotropic constitutive
relationships between thermodynamic variables based on measurements obtained in a spatially–
extended system. In other words, assuming the constitutive relation in the following general
form







thermodynamic

flux





 = k (state variables)







thermodynamic

“force”





 , (1)

our approach allows us to reconstruct the dependence of the transport coefficient k on the state
variables consistent with the assumed governing equations. Constitutive relations in form (1)
arise in many areas of nonequilibrium thermodynamics and continuum mechanics. To fix atten-
tion, but without loss of generality, in the present investigation we focus on a heat conduction
problem in which the heat flux q represents the thermodynamic flux, whereas the temperature
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gradient ∇T is the thermodynamic “force”, so that relation (1) takes the specific form

q(x) = −k(T ) ∇T (x), x ∈ Ω, (2)

where Ω ⊂ R
n, n = 1, 2, 3, is an open domain in which the problem is formulated. We note that

by assuming the function k : R → R to be given by a constant, we recover the well–known linear
Fourier law of heat conduction. While expressions for the transport coefficients such as k(T ) are
typically obtained using methods of statistical thermodynamics, in the present investigation we
will show how to reconstruct the function k(T ) based on some available measurements of the
spatial distribution of the state variable T combined with the relevant conservation law. Such a
technique could be useful, for example, to systematically adjust the form of a constitutive rela-
tionship derived theoretically to better match actual experimental data. Combining constitutive
relation (2) with an expression for the conservation of energy, we obtain a partial differential
equation describing the distribution of the temperature T in the domain Ω corresponding to the
distribution of heat sources g : Ω → R and suitable boundary conditions (for example, of the
Dirichlet type), i.e.,

−∇ · [k(T ) ∇T ] = g in Ω, (3a)

T =T0 on ∂Ω, (3b)

where T0 denotes the boundary temperature. Instead of (3b), we could also consider Neumann
boundary conditions involving k(T )∂T

∂n
, where n is the unit vector normal to the boundary ∂Ω

and pointing out of the domain, and our subsequent analysis would essentially be unchanged. In
regard to reconstruction of constitutive relations, it is important that such relations be consistent
with the second principle of thermodynamics [21]. There exist two mathematical formalisms,
one due to Coleman and Noll [22] and another one due to Liu [23], developed to ensure in a very
general setting that a given form of the constitutive relation does not violate the second principle
of thermodynamics. In continuous thermodynamical and mechanical systems this principle is
expressed in terms of the Clausius–Duhem inequality [24] which in the case of the present simple
model problem (2)–(3) reduces to the statement that k(T ) > 0 for all values of T . At the same
time, the condition k(T ) > 0 is also required for the mathematical well–posedness of elliptic
boundary value problem (3). In addition, to ensure the existence of classical (strong) solutions
of (3), we will assume that the heat source g(x) > 0 is at least a continuous function of x. This
appears reasonable taking into account possible physical phenomena represented by this term.
The positivity of g allows us to establish a lower bound on classical solutions of problem (3),
cf. Appendix A.

We now define two intervals:

• [Tα, Tβ] , [min
x∈Ω T (x), max

x∈Ω T (x)] which represents the range spanned by the solution of
problem (3); we note that, as demonstrated in Appendix A, the minimum Tα is attained at
the boundary ∂Ω; following [14], we will refer to the interval I , [Tα, Tβ] as the identifiability

interval,
• L , [Ta, Tb], where Ta ≤ Tα and Tb ≥ Tβ; this will be the interval on which we will seek to

obtain a reconstruction of the constitutive relation; we note that in general the interval L will
be larger than the identifiability interval, i.e., I ⊆ L.

It is assumed that the constitutive relations k(T ) are differentiable functions of the state variable
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(temperature) and belong to the following set

K = {k(T ) piecewise C1 on L; 0 < mk < k(T ) < Mk, ∀T ∈ L}, (4)

where mk, Mk ∈ R
+, whereas solutions of problem (3) belong to H1(Ω), i.e., the Sobolev space

of functions defined on Ω with square–integrable derivatives.

The specific parameter estimation problem that we address in this investigation is formulated
as follows. Given a set of continuous “measurements” T̃ (x), x ∈ Σ, of the state variable (tem-
perature) T acquired on the sensing domain Σ ⊆ Ω, we seek to reconstruct the constitutive
relation k(T ) for T ∈ L such that the solutions of problem (3) obtained with this reconstructed
function k(T ) will best match the available measurements in the least–squares sense. Therefore,
the constitutive relation k(T ) can be regarded as the “cause”, whereas the measurements of the
temperature field as the “effect”. The general reconstruction problem is set up here based on
continuous measurements, as required for consistency with the PDE–based formulation of the op-
timization problem. However, when we perform actual computations based on discretized PDEs,
continuous measurements will be expressed in terms of suitable pointwise measurements which
are more relevant from the application point of view. While our main goal in this investigation
is to develop an efficient computational algorithm for this problem, some basic mathematical
results concerning differentiability of the system outputs (measurements) with respect to the
constitutive relation are recalled in an Appendix. Parameter estimation problems in general tend
to be ill–posed [3], in the sense that measurement noise usually results in instabilities of the com-
puted solutions. Therefore, we will analyze the performance of our method in the presence of
noise, and will also assess the efficiency of Tikhonov regularization.

The plan of the paper is as follows: in the next Section we cast this parameter estimation problem
as PDE–constrained optimization, in the following Section we show how the gradients of the
cost functional can be conveniently computed using adjoint variables, whereas in Section 4 we
outline some regularization strategies needed in the presence of measurement noise; in Section 5
we describe an experimental design procedure allowing one to adjust the system inputs in order
to move the identifiability interval I; in Section 6 we present a range of computational results,
whereas summary and conclusions are deferred to Section 7. A number of theoretical results is
collected in two Appendices.

2 Parameter Estimation as an Optimization Problem

We will assume that the set K consisting of constitutive relations k(T ) defined on L is embedded
in a Hilbert (function) space X to be specified below. Solving our parameter estimation problem
is therefore equivalent to finding a solution to the operator equation

F(k) = T, (5)

where F : K → L2(Σ) is the map from the constitutive relations to the measurements. An
approach commonly used to solve such problems consists in reformulating them as least–squares
minimization problems which in the present case can be done by defining the cost functional
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J : X → R as

J (k) ,
1

2

∫

Σ

[

T̃ (x) − T (x; k)
]2

dx, (6)

where the dependence of the temperature field T (·; k) on the form of the constitutive relation
k = k(T ) is given by governing equation (3), and “,” means “equal to by definition”. We will find
minimizers of (6) using methods of gradient–based optimization and the required differentiability
of map (5) with respect to k when X = H1(I) is established in Appendix B. The optimal
reconstruction k̂ is therefore obtained as an unconstrained minimizer of cost functional (6), i.e.,

k̂ = argmin
k∈X

J (k). (7)

It is characterized by the first–order optimality condition which requires the directional differ-
ential of cost functional J , defined as J ′(k; k′) = limǫ→0 ǫ−1[J (k + ǫk′) − J (k)], to vanish for
all perturbations k′ ∈ X [25], i.e.,

∀k′∈X J ′(k̂; k′) = 0. (8)

The (local) optimizer k̂ can be computed with the following gradient descent algorithm as
k̂ = limn→∞ k(n), where







k(n+1) = k(n) − τ (n)
∇kJ (k(n)), n = 1, . . . ,

k(1) = k0,
(9)

in which ∇kJ (k) represents the gradient of cost functional J (k) with respect to the control
variable k (we will adopt the convention that a subscript on the operator ∇ will be used
when differentiation is performed with respect to variables other than x), τ (n) is the length
of the step along the descent direction at the n–th iteration, whereas k0 is the initial guess
taken, for instance, as a constant corresponding to a linear version of constitutive relation
(2), or some other approximate theoretical prediction. For the sake of clarity, formulation (9)
represents the steepest–descent algorithm, however, in practice one typically uses more advanced
minimization techniques, such as the conjugate gradient method, or one of the quasi–Newton
techniques [26]. We note that, since minimization problem (6)–(7) is in general nonconvex,
condition (8) characterizes only a local, rather than global, minimizer. We reiterate that the
constitutive property is required to satisfy the additional positivity condition k(T ) > 0 for all
T ∈ L. Therefore, to be more precise, the optimal reconstruction k̂ should be obtained as an
inequality–constrained minimizer of cost functional (6), i.e.,

k̂ = argmin
k∈X ,

k(T )>0, T∈L

J (k). (10)

We add that in problems involving constitutive relations depending on several state variables the
inequality constraint k(T ) > 0 will be replaced with a more general form of the Clausius–Duhem
inequality [24]. Inequality–constrained problem (10) can be transformed to an unconstrained
formulation analogous to (7) using for example the barrier function approach [27]. Other com-
putational techniques for solution of inequality–constrained parameter estimation problems are
discussed in [28]. However, in the computational studies performed for our model problem and
reported in Section 6 all solutions we found satisfied the condition k(T ) > 0, ∀T ∈ L, with-
out having to enforce this condition explicitly. Hence, this issue will not be considered in the
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present work, although we do intend to revisit it in the future in the context of more complicated
problems.

3 Cost Functional Gradients via Adjoint–based Analysis

The key ingredient of minimization algorithm (9) is computation of the cost functional gradient
∇kJ (k). We emphasize that, since k = k(T ) is a continuous variable, the gradient ∇kJ (k)
represents in fact an infinite–dimensional sensitivity of J (k) to perturbations of k(T ). Since
our constitutive relations belong to set K, cf. (4), we will seek to reconstruct k(T ) as elements
of the Sobolev space H1(L), so that the gradient ∇kJ will need to be obtained with respect
to the corresponding inner product. However, in order to make the derivation procedure easier
to follow, we will first obtain an expression for the gradient in the space L2(L), and only then
will obtain the Sobolev gradients which will be eventually used in the solution of optimization
problem (7). In both steps our transformations will be formal. We begin by computing the
directional differential of cost functional (6) which yields

J ′(k; k′) =
∫

Σ
[T (x; k) − T̃ (x)] T ′(x; k, k′) dx, (11)

where the perturbation variable T ′(xi; k, k′) satisfies the perturbation system obtained from (3).
Next, we invoke the Riesz representation theorem [30] for the directional differential J ′(k; ·),
which yields

J ′(k; k′) = 〈∇kJ , k′〉X , (12)

where 〈·, ·〉 represents an inner product in the Hilbert space X ( we will first set X = L2(L)
and afterwards change that to X = H1(L)). We note that the expression on the right–hand side
(RHS) in (11) is not consistent with Riesz representation (12), since the perturbation variable k′

is hidden in the system defining T ′(k, k′). However, this expression can be transformed to Riesz
form (12) with the help of a suitably–defined adjoint variable. Since our derivation of this result
for the present problem is in fact quite different from the approach followed in [6], we state it
in the form of the following theorem.

Theorem 3.1 Let Ω be a smooth bounded open set and k′ ∈ X = L2(L). We assume that the

function g and the solution T of (3) are sufficiently smooth. Then, the Riesz representation of

directional differential (11) has the form

J ′(k; k′) =
∫ Tb

Ta

[

∫

Ω
χ[Tα, T (x)](s)∆T ∗ dx −

∫

∂Ω
χ[Tα, T (x)](s)

∂T ∗

∂n
dσ

]

k′(s) ds, (13)

where χ[a,b](s) is the characteristic function for an interval [a, b] defined as follows

χ[a,b](s) =

{

1, s ∈ [a, b],

0, s /∈ [a, b],
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whereas the adjoint state T ∗ is defined as the solution of the system

k(T )∆T ∗ = [T̃ (x) − T (x)]χΣ(x), in Ω, (14a)

T ∗ = 0, on ∂Ω, (14b)

where

χΣ(x) =

{

1, x ∈ Σ,

0, x /∈ Σ,

denotes the characteristic function of the sensing domain Σ.

PROOF. While in principle the proof could be formulated based on the original form of gov-
erning system (3), the derivation and structure of the resulting expressions for the gradient ∇kJ
are simplified by a change of variables known as the “Kirchhoff transformation” [29]. We thus
introduce an auxiliary function V : I → R defined as follows

V (T ) ,
∫ T

Tα

k(s) ds. (15)

Noting that in fact T = T (x), we have ∇V (x) = k(T (x)) ∇T (x), and governing system (3) can
be expressed as

−∆V = g in Ω, (16a)

V (x) =
∫ T0(x)

Tα

k(s)ds on ∂Ω. (16b)

(Using one symbol V to denote functions depending on T and x admittedly represents an abuse
of notation, yet is justified here by simplicity.) Let T ∗ : Ω → R be an adjoint variable. We
integrate (16a) against T ∗ to obtain

−
∫

Ω
(∆V ) T ∗dx =

∫

Ω
g T ∗dx,

and then integrating by parts we get

∫

Ω
∇V · ∇T ∗ dx −

∫

∂Ω

∂V

∂n
T ∗ dσ =

∫

Ω
g T ∗dx. (17)

Next we differentiate (17) with respect to k

∫

Ω
∇V ′ · ∇T ∗dx −

∫

∂Ω

∂V ′

∂n
T ∗dσ = 0,

where the perturbation variable V ′ can be expressed as [cf. (15)]

V ′(T ) =
∫ T

Tα

k′(s) ds + k(T )T ′(k, k′), (18)
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so that after integrating by parts one more time we obtain

−
∫

Ω

[

∫ T (x)

Tα

k′(s)ds

]

∆T ∗dx −
∫

Ω
k(T )T ′∆T ∗dx

+
∫

∂Ω

[

∫ T (x)

Tα

k′(s)ds + k(T )T ′

]

∂T ∗

∂n
dσ −

∫

∂Ω

∂V ′

∂n
T ∗dσ = 0.

(19)

We now require that the adjoint variable T ∗ satisfy system (14). We note that owing to the
judicious choice of the RHS term in (14a), the second term in relation (19) is in fact equal to
the directional differential J ′(k; k′), so that we have

J ′(k; k′) =
∫

Ω

[

∫ T (x)

Tα

k′(s) ds

]

∆T ∗ dx −
∫

∂Ω

[

∫ T (x)

Tα

k′(s) ds

]

∂T ∗

∂n
dσ. (20)

We also notice that the boundary terms in (19) having T ′ and T ∗ as factors vanish due to the
boundary conditions on the state and adjoint variables, respectively, (3b) and (14b). Finally,
expression (13) for the Riesz representation of directional differential (11) can be obtained from
(20) using the characteristic function χ[Tα,T (x)](s) and reversing the order of integration with
respect to x and s, where this last step is justified by Fubini’s theorem. �

With the Riesz representation established in (13), we now proceed to identify expressions for
the cost functional gradient ∇kJ according to (12). While this is not the gradient that we will
use in actual computations, we analyze first the “simplest” case when X = L2(L), i.e., the space
of functions square integrable on [Ta, Tb], as it already offers some interesting insights into the
structure of the problem. The L2 gradient of the cost functional hence takes the form

∇
L2
k J (s) =

∫

Ω
χ[Tα, T (x)](s)∆T ∗ dx −

∫

∂Ω
χ[Tα, T (x)](s)

∂T ∗

∂n
dσ. (21)

We will now show that (21) is in fact equivalent to the cost functional gradient derived by
Chavent and Lemonnier in [6] and adapted to the present time–independent problem. Let us
consider the differentiation in (21) in the sense of distributions. Integration by parts of the first
term on the RHS in (21) and the resulting cancellation of the second term yield

∇
L2
k J (s) = −

∫

Ω
∇χ[Tα, T (x)](s) · ∇T ∗ dx. (22)

The characteristic function χ[Tα,T (x)](s) is a combination of Heaviside functions with respect to
T . Therefore, its distributional derivative with respect to x can be expressed using the chain
rule and a Dirac delta function as follows

∇
L2
k J (s) = −

∫

Ω
δ(T (x) − s)∇T · ∇T ∗ dx =

d

ds

∫

Ω
χ[Tα,T (x)−s](s)∇T · ∇T ∗ dx (23)

which is essentially the form of the cost functional gradient obtained in [6]. We note that the
expression on the RHS in (23) involves differentiation of an integral with respect to the level
set defining the integration region, an operation that is rather difficult to perform accurately in
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Fig. 1. Schematic showing (left) the solution T (x) of governing system (3) and (right) the corresponding
constitutive relation k(T ) defined over their respective domains, i.e., Ω = (−1, 1) and the identifiability
region I. The thick dotted line represents the extension of the the constitutive relation k(T ) from I to
the interval L. In the figure on the right the horizontal axis is to be interpreted as the ordinate.

numerical computations. Using (14a) we can transform expression for cost functional gradient
(21) to a form more convenient from the point of view of numerical computations, namely

∇
L2
k J (s) =

∫

Σ
χ[Tα, T (x)](s)

T̃ (x) − T (x)

k(T (x))
dx −

∫

∂Ω
χ[Tα, T (x)](s)

∂T ∗

∂n
dσ, (24)

where the numerical differentiation (with respect to x) is only required in the second integral
term.

The L2 gradients have been used in numerous computational studies involving PDE–constrained
optimization problem. In regard to the possibility of using the gradient ∇

L2
k J in the computa-

tions for the present problem, the following comments are in place:

(1) gradient (21), or (24), is nonvanishing for s ∈ I, and therefore the sensitivity of the func-
tional J (k) to perturbations of k can only be determined on the identifiability region I
which is typically smaller than the region L over which one would wish to reconstruct
the constitutive relation; the relationships between the interval L and the identifiability
region I, the physical and the state spaces are illustrated in Figure 1 where we assumed
Ω = (−1, 1),

(2) in view of the structure of expression (24), the L2 gradient ∇
L2
k J is in general a discontin-

uous function.

Evidently, in view of the issues mentioned above, the L2 gradients are unsuitable for the recon-
struction of the constitutive relations with the required properties, cf. (4). We will show that
these difficulties can be overcome using cost functional gradients defined in the Sobolev space
consistent with the functional setting of the problem, here H1(L) [31,32]. Such gradients are
guaranteed to be sufficiently smooth and are obtained in a straightforward way from the L2

gradients. Furthermore, these gradients can be defined on the entire interval [Ta, Tb] without an
artificial extension by zero and can be naturally combined with a technique to shift the identi-
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fiability region. The Sobolev gradients are discussed below, whereas shifting the identifiability
region is introduced in Section 5.

When defining Sobolev gradients in a PDE–constrained optimization problem one needs to
specify suitable boundary conditions characterizing the behavior of the gradient on the boundary
of its domain of definition. In “classical” problems in which the control parameter is a function
of the independent variables in the problem, the choice of these boundary conditions usually
follows quite naturally from the structure of the governing PDE. This is, however, not the case
in the present problem where it is not obvious what behavior should be imposed on the gradient
at the limits of the interval L. Out of several different possibilities, we choose to examine the
following two approaches.

In the first approach we construct the Sobolev gradients ∇
H1

k J by assuming that X = H1(L),
where the Sobolev space H1(L) is endowed with the following inner product

〈z1, z2〉H1(L) =
∫ Tb

Ta

[

z1z2 + l2
dz1

ds

dz2

ds

]

ds, z1, z2 ∈ H1(L) (25)

in which l ∈ R is a parameter with the meaning of a length–scale [we note that the L2 inner
product is obtained by setting l = 0 in (25)]. Next, we again invoke the Riesz representation
theorem, however, now we assume that k′ ∈ H1(L), so that we obtain

J ′(k; k′) = 〈∇L2
k J , k′〉L2(L) = 〈∇H1

k J , k′〉H1(L) =
∫ Tb

Ta



∇
H1

k J k′(s) + l2
d(∇H1

k J )

ds

dk′

ds



 ds.

(26)
Performing integration by parts and imposing the homogeneous Neumann boundary conditions
on the Sobolev gradient, i.e., d

ds
∇

H1

k J Ta,Tb
= 0, we obtain

J ′(k; k′) =
∫ Tb

Ta

∇
L2
k J k′(s) ds =

∫ Tb

Ta

[

∇
H1

k J − l2
d2

ds2
∇

H1

k J

]

k′(s) ds. (27)

Noting that relation (27) must be satisfied for any arbitrary k′, we conclude that the Sobolev gra-

dient ∇
H1

k J can be determined as a solution of the following inhomogeneous elliptic boundary–
value problem

∇
H1

k J − l2
d2

ds2
∇

H1

k J = ∇
L2
k J on (Ta, Tb), (28a)

d

ds
∇

H1

k J = 0 for s = Ta, Tb. (28b)

On the other hand, in the second approach we construct the Sobolev gradients ∇
H1

k J by first
assuming that X = H1(I), where the Sobolev space H1(I) is endowed with an inner product
analogous to (25), except that integration is now from Tα to Tβ . Proceeding as above and
imposing the homogeneous Neumann boundary conditions at the end points of the identifiability
interval I we obtain the gradient ∇

H1

k J as a solution of the following inhomogeneous elliptic
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boundary–value problem

∇
H1

k J − l2
d2

ds2
∇

H1

k J = ∇
L2
k J on (Tα, Tβ), (29a)

d

ds
∇

H1

k J = 0 for s = Tα, Tβ. (29b)

In order to be able to reconstruct the relation k(T ) over the entire interval L we need to extend
the Sobolev gradient defined in (29) onto L. We do this by prescribing

∇
H1

k J (s) = ∇
H1

k J (Tα) for s ∈ [Ta, Tα], (30a)

∇
H1

k J (s) = ∇
H1

k J (Tβ) for s ∈ [Tβ, Tb] (30b)

which preserves the continuity of the Sobolev gradient. Extraction of gradients in spaces of
smoother functions, such as the Sobolev spaces considered here, is a well–known device in
adjoint–based optimization of PDEs [32,33] where it is often regarded as a form of precon-
ditioning. We also emphasize that by changing the value of the length–scale parameter l we can
control the smoothness of the gradient ∇

H1

k J (k), and therefore also the relative smoothness of
the resulting reconstruction of k(T ). More specifically, it was shown in [32] that extracting cost
functional gradients in the Sobolev spaces such as introduced above is equivalent to applying
a low–pass filter to the L2 gradient with the quantity l−2 representing the “cut-off” scale. In
Section 6 we will compare the computational performance of the two approaches proposed and
will discuss certain additional reasons why Sobolev gradients are a useful device for the present
problem.

4 Reconstruction in the Presence of Measurement Noise

In this Section we discuss the important issue of reconstruction in the presence of noise in the
measurements. As can be expected based on the general properties of parameter estimation
problems [3], and as will be confirmed in Section 6.3, incorporation of random noise in the
measurements leads to an instability in the form of small–scale oscillations appearing in the
reconstructed constitutive relations. In the optimization framework a standard approach to
mitigate this problem is Tikhonov regularization [34] in which original cost functional (6) is
replaced with a regularized expression of the form

Jλ(k) , J (k) +
λ

2
‖k − k‖2

Y(I), (31)

where λ ∈ R
+ is an adjustable regularization parameter, k(T ) represents a constitutive relation

which our reconstruction k(T ) should not differ too much from, whereas ‖ · ‖Y(I) is the Hilbert
space norm in which we measure the deviation (k−k). Thus, the regularization term in (31), i.e.,
the second one on the RHS, involves some additional information which needs to be specified
a priori, namely, the choice of the reference constitutive relation k(T ) and the space Y(I).
As regards the reference function k(T ), one natural possibility is to consider a constant value
corresponding to a linearized version of constitutive relation (1). As regards the choice of the
space Y(I), we will consider the following two possibilities:
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(1) Y(I) = L2(I), so that the regularization term in (31) becomes (λ = λ1)

λ1

2
‖k − k‖2

L2(I) =
λ1

2

∫ Tβ

Tα

(k − k)2ds (32)

yielding the following L2 gradient of the regularized cost functional

∇
L2
k Jλ1(s) =

∫

Ω
χ[Tα, T (x)](s)∆T ∗ dx −

∫

∂Ω
χ[Tα, T (x)](s)

∂T ∗

∂n
dσ + λ1(k − k), (33)

(2) Y(I) = Ḣ1(I), where Ḣ1(I) denotes the Sobolev space equipped with the semi–norm

‖z‖Ḣ1(I) ,
∫ Tβ

Tα

(

∂z
∂s

)2
ds, ∀z∈H1(I); the regularization term in (31) becomes (λ = λ2)

λ2

2
‖k − k‖2

Ḣ1(I) =
λ2

2

∫ Tβ

Tα

(

dk

ds
−

dk̄

ds

)2

ds (34)

yielding the following L2 gradient of the regularized cost functional

∇
L2
k Jλ2(s) =

∫

Ω
χ[Tα, T (x)](s)∆T ∗ dx −

∫

∂Ω
χ[Tα, T (x)](s)

∂T ∗

∂n
dσ − λ2

d2k

ds2
|s∈[Tα,Tβ ]; (35)

we remark that in obtaining (35) integration by parts was applied to the directional deriva-
tive of the regularization term together with boundary conditions (29b).

Expressions (33) and (35) can now be used to obtain suitable Sobolev gradients as discussed in
Section 3. Computational tests illustrating the performance of the two forms of the Tikhonov
regularization on a problem with noisy data will be presented in Section 6.3. In that Section we
will also analyze the effect of the regularization parameters λ1 and λ2. We add that the stability
and convergence of Tikhonov regularization using the Sobolev norm H1 in the regularization
term and applied to a very similar inverse problem was established rigorously in [14].

5 Shifting the Identifiability Interval

In Section 3 it was argued that the sensitivity of the cost functional J is essentially available
on the identifiability interval I only, cf. Figure 1. The cost functional gradient may be formally
extended outside this interval using the techniques described at the end of Section 3, however,
these techniques merely ensure that the gradient is defined on the desired interval L and as
such do not generate any new sensitivity information. Since, as demonstrated by our computa-
tional results reported in Section 6, such techniques are not capable of accurately reconstructing
the relation k(T ) on an interval larger than the identifiability region, in the present Section
we propose an approach to “shift” the identifiability region, so that the relation k(T ) can be
reconstructed on a larger interval. In the limit, after performing several such shifts, the con-
stitutive relation k(T ) can be reconstructed on the entire interval L which is of interest in a
given problem. The idea behind shifting the identifiability region is to modify the data, such as
the RHS source term and the boundary conditions, in problem (3), so that the solution of the
modified problem spans a shifted interval I(1) = [Tα + h, Tβ + h], where h ∈ R. Hereafter we
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will adhere to the convention that the indices enumerating shifts of the identifiability interval
will appear as subscripts. This will allow us to distinguish them from the indices enumerating
iterations in the solution of the optimization problem on a given identifiability region, cf. (9),
which appear as superscripts. If the index representing the shifts of the identifiability region is
skipped, the interval I(0) is implied. Our approach is motivated by the following experimental
procedure designed to reconstruct the constitutive relation k(T ) on an interval L larger than an
individual identifiability interval.

Algorithm 1

• apply the heat sources g(0)(x) = g(x) and the boundary conditions T0,(0) = T0 to the actual

experimental system and obtain the measurements T̃(0)(x), x ∈ Σ; use these measurements to
reconstruct k(T ) on the identifiability region I(0) = I using relations (9), (21), (29) and (30)
• set j = 0
repeat

• set j = j + 1
• determine new heat source distribution g(j)(x) and boundary conditions T0,(j)

• apply the new heat source distribution and boundary conditions to the experimental
system and obtain new measurements T̃(j)(x), x ∈ Σ

• use the new measurements T̃(j)(x), x ∈ Σ to reconstruct k(T ) on a new identifiability
interval I(j) using (9), (21), (29) and (30)

until
⋃j

p=1 I(p) ⊃ L, i.e., until the union of all shifted identifiability regions I(0), . . . , I(j) covers
the interval L where we seek to reconstruct the constitutive relation

This sequence of steps is illustrated schematically in Figure 2. While all other elements of
Algorithm 1 should be obvious, the goal of the present Section is to show how to choose the
RHS source term g(j)(x) and the boundary condition T0,(j), so that the identifiability interval
I(j) will be approximately shifted by a prescribed value h. Let us suppose that T(0) is a known
solution of problem (3) spanning the identifiability interval I(0) which we now want to shift by
h > 0. We thus obtain

−∇ ·
[

k(T(0) + h) ∇(T(0) + h)
]

= g(1) in Ω, (36a)

T0,(0) + h =T0,(1) on ∂Ω, (36b)

which can be regarded as equations defining the new source distribution g(1) and new boundary
condition T0,(1) required for this shift. Since the function g(1) depends on the magnitude h of the
shift, for small values |h| ≪ 1 we can bypass this inconvenience using the Taylor series expansion

k(T(0)(x) + h) = k
(

T(0)(x)
)

+ h
dk

dT

(

T(0)(x)
)

+ O(h2) (37)

which holds for all x ∈ Ω, so that (36a) becomes

−∇ ·
[

k
(

T(0)

)

∇T(0)

]

− h∇ ·

[

dk

dT

(

T(0)

)

∇T(0)

]

= g(1) + O(h2). (38)
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Thus, the source distribution corresponding to the shifted identifiability region I(1) can be
approximated to the leading order as

g(1)(x) ≈ g(0)(x) − h∆
[

k
(

T(0)(x)
)]

, (39)

where g(0)(x) is the source distribution corresponding to the original (“unshifted”) identifiability
interval. Expression (39) can be used in Algorithm 1 employing the most up–to–date estimate
of the relation k(T ) resulting in

g(j+1)(x) ≈ g(j)(x) − h∆
[

k(j)

(

T(j)(x)
)]

. (40)

We note that in general the distance h may be allowed to vary from one shift to another. Shifting
the identifiability interval has the effect of generating the sensitivity information over a different
range of the state variable T . This might potentially have a detrimental effect on the reconstruc-
tion of k(T ) obtained on “earlier” identifiability intervals. In order for the reconstructions carried
out on shifted intervals I(j), j ≥ 1, not to destroy the earlier reconstructions on I(0), . . . , I(j−1),
optimization on shifted intervals will be performed using a cost functional augmented with a
Tikhonov–type penalty term, namely,

J(j)(k) , J (k) +
γ

2

∫ Tβ,(j−1)−δ

Tα,(0)

[k(s) − k(j−1)(s)]
2ds, (41)

where J (k) is defined in (6) and γ, δ ∈ R
+ are parameters. The purpose of including this ad-

ditional term is to ensure that the reconstruction performed on the new (shifted) identifiability
interval I(j) preserves the estimate already constructed on the union of the previous intervals
I(0), . . . , I(j−1). It will also have the additional effect of regularizing the reconstruction procedure

against measurement noise (cf. Section 4). We remark that if all the measurements {T̃(j)}
P
j=1

were available from the beginning, then at least in principle one could consider an alternative
approach based on solution of a single optimization problem on the union

⋃P
j=1 Ij of all iden-

tifiability intervals. However, the difficulty with such an approach is that there would not be
unique heat sources and boundary conditions defined on the composite identifiability interval.
The methodology proposed in this Section is in our opinion well suited for an actual experi-
mental procedure, as the experimental conditions (represented by the heat sources g(j)(x) and
boundary conditions T0,(j)) are adjusted in an adaptive fashion devised to produce temperature
measurements in a desired identifiability region. Computational results illustrating Algorithm 1
combined with update formula (40) and augmented functional (41) will be presented in Section
6.4.

6 Computational Results

In this Section we describe the computational results obtained with our proposed method.
Following a brief description of the numerical approaches used to solve the governing and the
adjoint problem, we present some diagnostic tests concerning computation of the gradient at a
given iteration. Next, we present the solution of the parameter estimation problem on a single
identifiability interval with and without noise. Finally, we discuss the solution of a sequence
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Fig. 2. Schematic illustrating the procedure for shifting the identifiability region. Notation is the same
as in Figure 1. The left and middle graphs correspond to reconstructions performed at two consecutive
intervals I(j) and I(j+1).

of parameter estimation problems on a set of identifiability regions shifted with respect to
each other using the algorithm described in Section 5. For the sake of simplicity, our sample
computations will be performed for a one–dimensional (1D) version of problem (3) with Ω =
(−1, 1).

Governing system (3) and adjoint system (14) are discretized on a uniform grid with Nx = 100
grid points using the second–order central differences combined with the cubic spline interpola-
tion of the function k(T (x)). For the purpose of this interpolation the interval L is discretized
using an equispaced grid with NT = 200 points, unless stated otherwise. The actual constitutive
relation we seek to reconstruct is given by the function

k̃(T ) = arctan (T − 2.5) + b, b = 2, (42)

whose locally steep slope makes it representative of a range of constitutive relations typically
encountered in thermodynamic systems. In parallel with discretization of the governing PDE,
we also discretize the continuous measurements using pointwise measurement data which is
typically available in actual experiments. We will assume that such pointwise measurements,
denoted {T̃i}

M
i=1, are available at a set of measurement points {xi}

M
i=1. We will in addition

assume that the sensing domain can be regarded as a union Σ =
⋃M

i=1 Σi of disjoint subdomains
Σi ∋ xi, i = 1, . . . , M , whose sizes |Σi| are of the order of the grid size ∆x = 2

Nx−1
, so that

∫

Σi
[T̃ (x)−T (x)]2 dx ≈ [T̃ (x)−T (x)]2 |Σi|, i = 1, . . . , M (see Figure 3). In the computational tests

reported below we used M = 10 (tests performed with different values of M yielded qualitatively
similar results). To mimic an actual experimental procedure, on each identifiability interval I(j),
j > 0, relation (42) is used in combination with governing system (3) to obtain pointwise
measurements {T̃i,(j)}

M
i=1. Relation (42) is then “forgotten” and is reconstructed using gradient–

based algorithm (9) on a single (Section 6.2), or several identifiability intervals (Section 6.4).
While in the calculations validating our basic formulation (presented in Sections 6.1, 6.2 and 6.4)
no noise was present in the measurements, its effect is addressed systematically in Section 6.3. In
terms of the initial guess on the first identifiability region I(0) we take a constant approximation
k0 to (42), whereas for the reconstruction problems on the shifted identifiability regions I(j)
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Fig. 3. Schematic showing discretization of continuous measurements T̃ (x), x ∈ Σ with pointwise mea-
surements available at the discrete points x1, . . . ,xM . Hatched areas represent the individual sensing
domains Σi, i = 1, . . . ,M .

we take k̂(j−1)(T ), i.e., the approximation of the constitutive relation obtained with the data

on the interval I(j−1). The initial distribution of the heat sources was g(0) = − (ex−2x)2

1+(ex−x2−0.5)2
−

[arctan(ex − x2 − 0.5) + 2] (ex − 2) resulting in the identifiability region I(0) = [1.3679, 3.7183].
The interval over which we seek to reconstruct the constitutive relation is L = [0, 5.0862].

6.1 Validation of Gradients

In this Section we present results demonstrating the consistency of the cost functional gradients
obtained with the approach described in Section 3. In Figure 4 we present the L2 and several
Sobolev H1 gradients obtained at the first iteration. In the first place, we observe that as
discussed in Section 3 the L2 gradients do indeed exhibit discontinuities which makes them
unsuitable for the reconstruction of constitutive relations with required properties, cf. (4). On
the other hand, the gradients extracted in the Sobolev space H1 are characterized by the required
smoothness and therefore hereafter we will solely use the Sobolev gradients. We also observe that
the two techniques for extending the gradients discussed in Section 3 [equations (28) and (29)–
(30)] result in quite different behavior of the Sobolev gradients outside the identifiability region
I. These different behaviors will result in different quality of reconstruction of the constitutive
relation. Next, in Figure 5 we present the results of a diagnostic test commonly employed to
verify the correctness of the cost functional gradient [35]. It consists in computing directional
differential (12) in two different ways, namely, using a finite–difference approximation and using
the adjoint field, and then examining the ratio of the two results

κ(ǫ) ,
ǫ−1 [J (k + ǫk′) − J (k)]
∫ Tb

Ta
∇kJ (s) k′(s) ds

(43)

for a range of values of ǫ. We emphasize that in view of Riesz identity (12) it does not matter
which inner product (i.e., L2 vs. H1) is adopted in the expression in the numerator in (43).
If the gradient ∇kJ (k) is computed correctly, then for intermediate values of ǫ, κ(ǫ) should
be close to the unity. Remarkably, this behavior can be observed in Figure 5 over a range of ǫ
spanning about 10 orders of magnitude for two different perturbations k′(T ). Furthermore, we
also emphasize that refining the discretization of the interval L yields values of κ(ǫ) much closer
to the unity. As can be expected, the quantity κ(ǫ) deviates from the unity for very small values
of ǫ, which is due to the subtractive cancellation (round–off) errors, and also for large values of
ǫ, which is due to the truncation errors.
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Fig. 4. Comparison of (solid line) the L2 gradient ∇
L2J and the Sobolev gradients ∇

H1
J defined (a)

in (28) and (b) in (29)–(30) for different values of the smoothing coefficient (dashed line) l = 0.05 and
(dash–dotted line) l = 0.2 at the first iteration with the initial guess k0 = const = 2.13. The vertical
dotted lines represent the boundaries of the identifiability interval I(0).

10
−15

10
−10

10
−5

10
0

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

ε

κ 
(ε

)
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6.2 Reconstruction on a Single Identifiability Interval

We solve minimization problem (7) using the BFGS algorithm [26] and, unless indicated other-
wise, Sobolev gradients computed with l = 0.2 which was found by trial–and–error to maximize
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the rate of convergence of iterations (9). The termination condition used was
∣

∣

∣

J (k(n))−J (k(n−1))
J (k(n−1))

∣

∣

∣ <

10−6. The behavior of the cost functional J (k(n)) as a function of the iteration count n is shown
in Figure 6a for the Sobolev gradients defined in (28) and in (29)–(30). We note that while in
both cases a decrease over several orders of magnitude is observed in just a few iterations, in
the first case the cost functional eventually drops to very small values. The effect of the differ-
ent values of the constant initial guess k0 on the decrease of the cost functional is illustrated
in Figure 6b. We note that the cost functional J (k(n)) decreases rapidly for all investigated
values of the constant k0, although the iterations saturate at different levels. It is interesting to

observe that the best results were obtained for the initial guess k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499

which is the algebraic mean of the values of the true constitutive relation k̃(T ) evaluated at the
“measured” temperatures. Reconstructions k̂(T ) of the constitutive relation obtained using the
Sobolev gradients defined in (28) and in (29)–(30) are shown in Figures 7 and 8, respectively.
We note that while the quality of the reconstruction on the identifiability region I is comparable
in the two cases, outside the identifiability region the second approach clearly offers superior
accuracy. In Figure 9 we show the reconstructions k̂(T ) of the constitutive relation obtained
for different values of the constant initial guess k0 (the same values as used in Figure 6b). We
conclude that, since the reconstructed relations are quite different, the iterations starting from
different initial guesses converge in fact to different local minimizers. However, these differences
notwithstanding, all reconstructions shown in Figure 9 capture the main features of the true
constitutive relation (42). We also emphasize that there is a range of values of the initial guess k0

for which the quality of reconstruction is excellent (cf. Figure 8 and 9d). Next, in Figure 10a we
show the solutions T (x; k) to problem (3) corresponding to the reconstructed conductivity k̂(T ),
cf. Figure 8, and the true conductivity k̃(T ), cf. (42), together with the measurements {T̃i}

10
i=1

used as data in the solution of the problem. We note excellent agreement of the solutions ob-
tained based on the reconstructed and measured constitutive relations. Since the solutions T (x)
corresponding to the reconstructed and true constitutive relations cannot be distinguished in
Figure 10a, in Figure 10b we show the error |T (x; k̂)−T (x; k̃)| corresponding to the reconstruc-
tion k̂ obtained using the two definitions of the Sobolev gradients given in Section 3. Finally,
we remark that, although the Sobolev gradients defined in (28) resulted in a larger decrease of
the cost functional in Figure 6a and smaller errors evident in Figure 10b, this is in fact offset
by the more favorable behavior of the Sobolev gradients defined in (29)–(30) outside the identi-
fiability region. Thus, this second approach will be used in the sequel to perform reconstruction
on shifted identifiability regions.

6.3 Reconstruction in the Presence of Noise

In this Section we first assess the effect of noise on the reconstruction without Tikhonov regu-
larization and then study the efficiency of the regularization techniques introduced in Section 4.
In Figure 11 we revisit the case presented first in Figure 8, now for measurements contaminated
with 1%, 3%, 5% and 10% uniformly distributed noise and without Tikhonov regularization. As
expected, we see that increasing levels of noise lead to oscillatory instabilities developing in the
reconstructed constitutive relations k(T ). We further observe that this instability is somewhat
less pronounced in reconstructions performed with “smoother” gradients [i.e., corresponding to
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Fig. 6. (a) Decrease of the cost functional J (k(n)) with iterations n using the Sobolev gradient ∇
H1

J
defined (asterisks) in (28) and (circles) in (29)–(30) with l = 0.2; the initial guess was k0 = 2.13,
(b) decrease of the cost functional J (k(n)) with iterations n for different initial guesses: (diamonds)

k0 = 2.5, (asterisks) k0 = 1.5, (triangles) k0 = 2, and (circles) k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499 obtained

with the Sobolev gradients defined in (29)–(30).

larger values of the length–scale parameter ℓ in (29a)]. This regularizing effect of the Sobolev
gradients was already discussed in [32].

The effect of the Tikhonov regularization is studied in Figure 12 where we illustrate the per-
formance of the two techniques described in Section 4, cf. (32) and (34), on the reconstruction
problem with 10% noise in the measurement data (i.e., the “extreme” case presented in Fig-
ure 11). We conclude that regularization with the Sobolev Ḣ1(I) term tends to give somewhat
better results than regularization with the L2 term, cf. Figures 12(a,b) and 12(c,d). In both
cases, with increasing values of the regularization parameters λ1 and λ2 the reconstructed con-
stitutive relations become smoother at the price however of larger reconstruction errors which
is a well–known trade–off involved in Tikhonov regularization. Systematic methods for deter-
mining optimal values of regularization parameters are discussed for instance in [34]. Finally,
in Figure 13 we present the relative reconstruction errors ‖k̂ − k̃‖L1(I) / ‖k̃‖L1(I) obtained using
the approaches discussed in Section 4 for data with different noise levels and averaged over 100
noise samples. We note that on the whole regularization with the Sobolev Ḣ1(I) term performs
slightly better than regularization with the L2(I) term. Reconstructions employing the Sobolev
gradients alone with no Tikhonov regularization produce significantly poorer results especially
for larger noise amplitudes. We close this Section by concluding that Tikhonov regularization
performs as expected in problems with significant noise levels in the measurement data.

6.4 Reconstruction on Shifted Identifiability Intervals

In this Section we implement the approach for shifting the identifiability region described in
Section 5. We reiterate that the goal is to extend the range of the state variable T on which
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Fig. 7. Reconstruction k̂(T ) of the constitutive relation obtained using the Sobolev gradients defined in
(28) on (a) the interval L and (b) close–up view showing the identifiability interval I(0). The dash–dotted
line represents the true constitutive relation (42), the solid line is the reconstruction, whereas the dashed
line represents the initial guess k0 = 2.13; the vertical dotted lines in the figure on the left represent
the boundaries of the identifiability interval I(0).
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Fig. 8. Reconstruction k̂(T ) of the constitutive relation obtained using the Sobolev gradients defined
in (29)–(30) on (a) the interval L and (b) close–up view showing the identifiability interval I(0). The
dash–dotted line represents the true constitutive relation (42), the solid line is the reconstruction,
whereas the dashed line represents the initial guess k0 = 2.13; the vertical dotted lines in the figure on
the left represent the boundaries of the identifiability interval I(0).

one can accurately reconstruct the constitutive relation so as to cover the entire interval L. As
implied by Algorithm 1, we do this by solving a sequence of reconstruction problems, each with
the cost functional, the RHS source term and boundary conditions in governing equation (3)
chosen as described in Section 5. From the practical point of view, this mimics performing a
sequence of laboratory experiments, each in suitably chosen conditions represented by g(j) and
T0,(j), to generate the data for the reconstruction process on different identifiability intervals.
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Fig. 9. Reconstruction k̂(T ) of the constitutive relation obtained using different initial guesses (a)

k0 = 2.5, (b) k0 = 1.5, (c) k0 = 2 and (d) k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499, and the Sobolev gradients

defined in (29)–(30). The dash–dotted lines represent the true constitutive relation (42), the solid lines
are the reconstructions, whereas the dashed lines represent initial guesses; the vertical dotted lines
represent the boundaries of the identifiability interval I(0).

Results obtained with this approach and performing shifts in one direction only, i.e., towards
larger values of T , are shown in Figures 14 and 15 for P = 12 and P = 50 shifts, respectively.
The shifts were performed assuming h = 0.1 in (40) and γ = 12 in (41). The parameter δ in (41)
was equal to 6% and 3% of the width of the current identifiability interval respectively in the
problems with 12 and 50 shifts. All of these parameters were chosen empirically to maximize the
quality of the reconstruction. We observe that, as compared to the reconstruction performed on
I(0) only, now a good estimate of the constitutive relation k(T ) is obtained for a much broader
range of T , although the quality of this reconstruction slowly degrades as the number of shifts
is increased. Moreover, as is evident from Figures 8b, 14c, and 15c, this is achieved at the cost
of a slight deterioration of the final reconstruction k̂(P )(T ) on the original identifiability interval

I(0) as compared to the reconstruction k̂(0)(T ) obtained without any shifts. Finally, in Figure
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Fig. 10. (a) Solution T (x, k) of governing equation (3) corresponding to (solid line) the reconstructed
constitutive relation k̂, (dashed line) the initial guess k0 = 2.13, and (dash–dotted line) the true
constitutive relation k̃; asterisks represent the measurement data {T̃i}

10
i=1, (b) the error |T (x; k̂)−T (x; k̃)|

between the solution of governing equation (3) corresponding to k̂ obtained using the Sobolev gradients
defined (solid line) in (28) and (dashed line) in (29)–(30), and the solution corresponding to the true
constitutive relation (42).

16 we present the reconstruction k̂(2P )(T ) of the constitutive relation obtained by shifting the
identifiability region in both directions. This is achieved by performing the shifts towards larger
and smaller values of T in an interchanging manner. The parameters used were h = 0.1, γ = 8
and δ = 4% × [width of the current identifiability region]. We observe that in this problem as
well good reconstruction of the constitutive relation k(T ) was obtained on the entire interval L.
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(d)

Fig. 11. Reconstruction k̂(T ) of the constitutive relation obtained using the Sobolev gradients defined in
(29)–(30) with (a,b) ℓ = 0.2 and (c,d) ℓ = 0.4 and different noise levels in the measurement data: (thick
solid line) no noise, (dashed line) 1%, (dash–dotted line ) 3%, (thin solid line) 5%, and (thick dashed
line) 10%. The dashed horizontal line represents the initial guess k0 = 2.13, whereas the vertical dotted
lines in the figures on the left represent the boundaries of the identifiability interval I(0). Figures (a) and
(c) correspond to the interval L, whereas figures (b) and (d) show a close–up view of the identifiability
interval I(0).
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(d)

Fig. 12. Effect of Tikhonov regularization on the reconstruction from the measurement data with 10%
noise using (a,b) regularization term (32) and (c,d) regularization term (34). In Figures (a) and (b)
the following values of the regularization parameter were used: (thick dashed line) λ1 = 0, (circles)
λ1 = 0.01, (dashed line) λ1 = 0.05, (thin solid line) λ1 = 0.1, (dash–dotted line) λ1 = 0.2, and (dots)
λ1 = 0.4. In Figures (c) and (d) the following values of the regularization parameter were used: (thick
dashed line) λ2 = 0, (circles) λ2 = 0.001, (dashed line) λ2 = 0.003, (thin solid line) λ2 = 0.005,
(dash–dotted line) λ2 = 0.01, and (dots) λ2 = 0.02. The dashed horizontal line represents the initial
guess k0 = 2.13, whereas the vertical dotted lines in the figures on the left represent the boundaries
of the identifiability interval I(0). Figures (a) and (c) correspond to the interval L, whereas figures (b)
and (d) show a close–up view of the identifiability interval I(0).
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Fig. 13. Relative L1 reconstruction errors ‖k̂− k̃‖L1(I) / ‖k̃‖L1(I) obtained in the presence of noise with
the amplitude indicated and averaged over 100 samples: (dash–dotted line) reconstruction with Sobolev
gradients and without Tikhonov regularization [(circles) ℓ = 0.2, (triangles) ℓ = 0.4], (dashed line)
reconstruction with L2 Tikhonov regularization term (32) [(circles) λ1 = 0.01, (triangles) λ1 = 0.1], and
(solid line) reconstruction with Ḣ1 Tikhonov regularization term (34) [(circles) λ2 = 0.005, (triangles)
λ2 = 0.003]. The thick dashed line represents the “error” in the exact constitutive relation (42) obtained
by adding noise to T .
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Fig. 14. Reconstruction k̂(P )(T ) of the constitutive relation on an union of P = 12 shifted identifiability
regions: (a) the interval L, (b) magnification of the region where the different identifiability intervals
overlap, and (c) the initial identifiability interval I(0). The dash–dotted line represents the true consti-

tutive relation (42), the solid line is the reconstruction k̂(P )(T ) after P = 12 shifts, whereas the dotted

line represents the reconstruction k̂(0)(T ) obtained without any shifts; the vertical lines represent the
boundaries of (dotted) the interval I(0) and (solid) the interval I(12).
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Fig. 15. Reconstruction k̂(P )(T ) of the constitutive relation on an union of P = 50 shifted identifiability
regions: (a) the interval L, (b) magnification of the region where the different identifiability intervals
overlap, and (c) the initial identifiability interval I(0). The dash–dotted line represents the true consti-

tutive relation (42), the solid line is the reconstruction k̂(P )(T ) after P = 50 shifts, whereas the dotted

line represents the reconstruction k̂(0)(T ) obtained without any shifts; the vertical lines represent the
boundaries of (dotted) the interval I(0) and (solid) the interval I(50).
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Fig. 16. Reconstruction k̂(2P )(T ) of the constitutive relation obtained with the original identifiability
region shifted interchangeably towards larger and smaller values of T : (a) interval L, (b) the initial
identifiability interval I(0), and (c,d) magnification of the regions where the different identifiability
intervals overlap. The dash–dotted line represents the true constitutive relation (42), the solid line is
the reconstruction k̂(2P )(T ) after P = 12 shifts in each direction, whereas the dotted line represents

the reconstruction k̂(0)(T ) obtained without any shifts; the vertical lines represent the boundaries of

(dotted) the interval I(0) and (solid) the union ∪2P
j=0I(j).

29



7 Conclusions and Summary

In this study we investigated a novel computational approach to reconstruction of constitutive
relations based on incomplete measurement data. This parameter estimation problem is solved
using a gradient–based optimization technique in which the sensitivities of the cost functional
with respect to the form of the constitutive relation are computed using a suitably–defined ad-
joint system. The main challenge inherent in this problem follows from the fact that the control
variable is a function of the state, rather than the independent variable in the governing system.
We studied the problem in the context of the “optimize–then–discretize” approach to PDE–
constrained optimization and demonstrated how using the Kirchhoff transformation one can
obtain an expression of the cost functional gradient more convenient from the computational
point of view than derived in earlier studies [6]. We also argued that the traditional L2 cost
functional gradients are discontinuous and therefore unsuitable for reconstruction of smooth
constitutive relations. It was shown that this difficulty can be resolved by using the Sobolev
gradients defined consistently with the functional setting of the problem in the optimization
algorithm. Finally, we proposed and validated a procedure allowing one to shift the identifiabil-
ity region, and in this way reconstruct the constitutive relation over a much broader range of
the state variable. A novel aspect of this approach is an adaptive adjustment of experimental
parameters needed to produce measurements in a prescribed identifiability region. We add that
this procedure also relies on the use of the Sobolev gradients. Computational tests demonstrated
the feasibility of the proposed approach on a simple 1D model problem, and constitute a proof
of concept for the method. These elements represent the key original contributions of this work.
The results obtained underline the importance of a good choice of the initial guess k0 for iterative
procedure (9). Such an initial guess can be taken as a constant matched to reflect the bulk prop-
erties of the material. We also addressed the important issue of reconstruction in the presence of
random noise in the measurement data, and showed that the classical Tikhonov regularization
involving L2 and H1 regularization term is able to stabilize the reconstruction process, even for
significant noise levels. Our computations indicate that the use of suitable Sobolev gradients
in the reconstruction process may also have some regularizing effect. In addition to the results
analyzed in detail in Section 6, we also tested the algorithm on several other problems involving
different forms of the actual constitutive relation k̃(T ) and the RHS function g, and in all cases
obtained good results. We note that, in particular, using the Sobolev gradients we were also able
to obtain satisfactory results in situation in which ∇T (x; k̃) ≈ 0 and ∆T (x; k̃) ≈ 0 at some
points x ∈ Ω. We emphasize that such cases are especially challenging, since as is evident from
the expanded form of (3a), in these situations the reconstruction problem might possibly also
admit solutions k(T ) unbounded at T = T (x).

Our future work will involve extensions of the present approach to more complicated problems
involving systems of coupled PDEs depending on time and defined on domains with higher
dimensions. It is particularly interesting to consider problems in which the constitutive rela-
tion appearing in one equation depends on the state variable governed by a different equation
(e.g., reconstruction of the temperature dependence of the viscosity coefficient in the momen-
tum equation where the temperature is governed by a separate energy equation). We are already
investigating such problems and results will be reported in the near future. In the context of
such systems another interesting issue is the reconstruction of anisotropic constitutive relations,
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i.e., expressed by the tensorial version of (1). A still more challenging problem is related to
reconstruction of constitutive relations in systems involving phase changes. In addition to the
governing PDE in the form of a free–boundary problem, one would also have to deal with consti-
tutive relations with distinct functional forms in each of the phases. When studying such more
complicated problems, close attention will need to be paid to the problem of ensuring consis-
tency of the reconstructed constitutive relation with the second principle of thermodynamics.
In general, this can be done by revisiting the inequality–constrained version (10) of the problem
with the constraint given in the form of the complete Clausius–Duhem inequality.
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A Minimum Principle for Problem (3)

Theorem A.1 Let T ∈ C2(Ω)∩C0(Ω) be a solution of (3). If k(T ) > 0, ∀T ∈ I,and g(x) > 0,
∀x ∈ Ω, then

min
x∈Ω

T (x) = Tα = min
x∈∂Ω

T0(x),

i.e., the minimum is attained on the boundary ∂Ω.

PROOF. Although Theorem A.1 may be obtained as a special case from a more general result
given in [36], we present here the proof for the sake of completeness. We prove this theorem by
contradiction. Let us assume that the minimum of the solution T is attained at an interior point
x̃ ∈ Ω. Since ∇T (x̃) = 0, Equation (3a) takes form −k(T ) ∆T = g at the point x̃. Therefore,
by continuity, we would have ∆T < 0 in a small neighborhood of x̃ which would contradict the
assumption that T (x̃) is a minimum. �

B Differentiability of Map (5)

In this Appendix we outline the proof of a theorem concerning the differentiability of map
(5) from the constitutive relations to measurements. In its main idea our proof is analogous
to the proof presented in [6] for a different (time–dependent) problem, however, a number of
intermediate estimates are different. We thus consider problem (3) in a general bounded domain
Ω with a C1,1 boundary and start by defining the following functional spaces for the dependent
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variable T
T = {T ∈ H1(Ω); T = 0 on ∂Ω}, H = L2(Ω), T ′ = H−1(Ω), (B.1)

where for simplicity we have assumed homogeneous Dirichlet data. The inner product ((·, ·))∗
in the dual space T ′ is defined as

((u, v))∗ = (D−1u, D−1v)H1, (B.2)

where D = ∆ is the canonical isomorphism between T and T ′, i.e.,

if u ∈ T =⇒ D u = ∆u ∈ T ′. (B.3)

We consider two weak formulations of governing system (3), namely, a variational formulation
in the space T defined as follows

∫

Ω

k(T )∇T · ∇u dx =
∫

Ω

g u dx, T, u ∈ T , (B.4)

and a weaker one obtained from (B.4) by setting u = D−1w

∫

Ω

V (T ) · w dx = ((g, w))∗, ∀w ∈ H, (B.5)

where V (T ) is defined in (15). Now, we state a differentiability result for the solution T = T (x; k)
of equation (B.4) in which the solution T (x; k) is treated as an element of L2(Ω), cf. (5) and (6).

Theorem B.1 Assume that mk, cf. (4), is sufficiently large and solutions of (3) satisfy ‖∇T‖L∞(Ω) <
∞. Then the map k → T (·; k) from K to L2(Σ) defined by (B.4) is Fréchet–differentiable in the

norm H1(I).

PROOF. Let k′ denote the variation of k such that k, ǩ , k + k′ ∈ K ⊂ H1(I). To show
differentiability of the map k → T (·; k) we need to prove the existence of the Fréchet differential
T ′, such that

lim
‖k′‖

H1(I)→0

‖T (k + k′) − T (k) − T ′(k; k′)‖L2(Σ)

‖k′‖H1(I)

= 0. (B.6)

For simplicity, we shall use the following notation

R , T (k + k′) − T (k) − T ′(k; k′), Ť , T + T ′ + R, δT , T ′ + R. (B.7)

Writing equation (B.5) for Ť and T , and subtracting we obtain

∫

Ω

[

V (Ť ) − V (T )
]

w dx = −
∫

Ω

V ′(Ť ) w dx, (B.8)

where, in analogy with (15), the integrand on the RHS is defined as

V ′(Ť ) =

Ť
∫

Tα

k′(s) ds
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so that V (Ť ) = V (T ) − V ′(Ť ). Next, we postulate that the Fréchet differential T ′ satisfy the
following equation

∫

Ω

k(T ) T ′ w dx = −
∫

Ω

V ′(T ) w dx. (B.9)

Existence of solutions of (B.9) is established via a straightforward application of Lax–Milgram
lemma, since (B.9) is a linear elliptic boundary–value problem. Therefore, our goal now is to
prove that ‖R‖L2(Σ), cf. (B.7), vanishes faster that ‖k′‖H1(I). Subtracting (B.9) from (B.8) yields

∫

Ω

[

V (Ť ) − V (T ) − k(T ) T ′
]

w dx = −
∫

Ω

[

V ′(Ť ) − V ′(T )
]

w dx. (B.10)

Since k(T ) ∈ H1(I), it follows from Taylor’s theorem that there exist θ ∈ [0, 1] such that

V (Ť ) = V (T ) + k(T ) δT +
1

2
k̇(T + θδT )(δT )2, (B.11)

almost everywhere in T , where k̇ denotes the derivative of k with respect to its argument.
Therefore, the left hand side of (B.10) simplifies to

∫

Ω

[

k(T )R +
1

2
k̇(T + θ δT )(δT )2

]

w dx, (B.12)

whereas for the right hand side of (B.10) we use

V ′(Ť ) = V ′(T ) + k′(T + θ′ δT )δT, (B.13)

where θ′ ∈ [0, 1]. Transforming equation (B.10) with expressions (B.12) and (B.13) yields

∫

Ω

k(T )Rw dx = −
∫

Ω

[

1

2
k̇(T + θδT )(δT )2 + k′(T + θ′δT )δT

]

w dx. (B.14)

This is a linear elliptic boundary–value problem for which there exist an a priori estimate (see,
for example, Section 2.3 in [36])

‖R‖L2(Ω) 6
∥

∥

∥

∥

1

2
k̇(T + θδT )(δT )2 + k′(T + θ′δT )δT

∥

∥

∥

∥

L2(Ω)
. (B.15)

For k ∈ K we can reduce inequality (B.15) to the form

‖R‖L2(Ω) 6 C1‖(δT )2‖L2(Ω) + ‖k′‖L2(I) ‖δT‖L2(Ω). (B.16)

We now proceed to demonstrate that the RHS of (B.16) vanishes faster than ‖k′‖H1(I), i.e., as
‖k′‖q

H1(I) for some q > 1. In relation (B.16) and hereafter the symbols C with subscripts and
primes will denote different positive constants.

We start with the term ‖δT‖L2(Ω). Writing the original weak form (B.4) for k and ǩ, subtracting
and setting u = δT produces

∫

Ω

ǩ(Ť ) (∇δT )2 dx +
∫

Ω

[

k(Ť ) + k′(Ť ) − k(T )
]

∇δT · ∇T dx = 0. (B.17)
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For ǩ ∈ K we have the following estimate for the first term in (B.17)

∫

Ω

ǩ(Ť ) (∇δT )2 dx > mk ‖∇δT‖2
L2(Ω). (B.18)

Now we need to assume that C2 = ‖∇T‖L∞(Ω) < ∞, cf. [6]. Then, for the second term in (B.17)
we have
∫

Ω

[

k′(Ť ) + k̇(T + θδT )δT
]

∇δT · ∇T dx 6 C2

∫

Ω

[

k′(Ť ) + k̇(T + θ δT )δT
]

|∇δT | dx. (B.19)

Next, we combine (B.18) and (B.19) to obtain the inequality

mk ‖∇δT‖L2(Ω) 6 C ′
1 ‖k

′‖L2(I) + C ′
2 ‖δT‖L2(Ω). (B.20)

Using the following Poincare inequality ‖δT‖L2(Ω) 6 C3‖∇δT‖L2(Ω) we see that

mk

C3
‖δT‖L2(Ω) 6 C ′

1‖k
′‖L2(I) +C ′

2‖δT‖L2(Ω), mk ‖∇δT‖L2(Ω) 6 C ′
1 ‖k

′‖L2(I) +C ′
2 C3 ‖∇δT‖L2(Ω).

Assuming that mk is sufficiently large, so that mk − C ′
2 C3 > 0, we obtain

‖δT‖L2(Ω) 6
C ′

1 C3

mk − C ′
2 C3

‖k′‖L2(I), ‖∇δT‖L2(Ω) 6
C ′

1

mk − C ′
2 C3

‖k′‖L2(I). (B.21)

Next we estimate ‖(δT )2‖L2(Ω) ≡ ‖δT‖2
L4(Ω). As a consequence of the Sobolev embedding theorem

(see, e.g., Theorem 4.12 in [37]), we have the following inclusion

T ⊂ H1(Ω) = W 1,2(Ω) ⊂ L6(Ω), n 6 3.

Therefore, for δT ∈ T and in the light of estimates (B.21), we obtain

‖δT‖L6(Ω) 6 C ‖δT‖H1(Ω) 6 C ′‖k′‖L2(I). (B.22)

We then use the interpolation theorem (see e.g., Theorem 2.11 in [37]) for the Lp spaces which
states that for ξ ∈ Lp ∩ Lq, 1 6 p 6 r 6 q 6 ∞ and t ∈ [0, 1], we have

‖ξ‖Lr
6 ‖ξ‖t

Lp
‖ξ‖1−t

Lq
⇐⇒

1

r
=

t

p
+

1 − t

q
.

Applying this result to ‖δT‖2
L4(Ω) with r = 4, p = 2, q = 6 we obtain using (B.21) and (B.22)

‖δT‖L4(Ω) 6 ‖δT‖
1
4

L2(Ω) ‖δT‖
3
4

L6(Ω) =⇒ ‖(δT )2‖L2(Ω) = ‖δT‖2
L4(Ω) 6 C ′′‖k′‖2

L2(I). (B.23)

Finally, substituting estimates (B.21) and (B.23) for ‖δT‖L2(Ω) and ‖(δT )2‖L2(Ω) into (B.16) we
obtain

‖R‖L2(Ω) 6 C1 ‖(δT )2‖L2(Ω) + ‖k′‖L2(I) ‖δT‖L2(Ω) 6 C ′′′ ‖k′‖2
L2(I) 6 C ′′′′ ‖k′‖2

H1(I), (B.24)

This demonstrates that ‖R‖L2(Ω) vanishes faster than ‖k′‖H1(I). Therefore k −→ T (·; k) is
Fréchet–differentiable from H1(I) to L2(Σ). �
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We remark that, as is evident from (B.24), T (·; k) is also differentiable from L2(I) to L2(Σ).
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