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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» Consider an approximation of u € L2(/) in terms of a TRUNCATED
CHEBYSHEV SERIES up(x) = ZQ’ZO iy Tr(x)

» Cancel the projections of the residual Ry = u — uy on the N + 1 first
basis function (i.e., the Chebyshev polynomials)
1 N
(RN,T,)w:/ uTw =Y T Tw | dx=0, 1=0,...,N
-1 k=0

» Taking into account the orthogonality condition, expressions for the
Chebyshev expansions coefficients are obtained
2 1
= — uTyw dx,
TCk J-1
which can be evaluated using, e.g., the
GAUSS-LOBATTO-CHEBYSHEV QUADRATURES .

» QUESTION — What happens on the boundary?
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

Theorem

Let Py : L2(I) — Py be the orthogonal projection on the subspace Py of
polynomials of degree < N. For all 1 and o such that 0 < u < o, there
exists a constant C such that

Ju — Pyl < CNEED| [y,

1
2u—o— = for > 1,
_ 2
where e(pu,0) = 3
- for0<pu<1

“Philosophy"” of the proof.

1. First establish continuity of the mapping v — @, where
(0) = u(cos(f)), from the weighted Sobolev space H'(/) into the
corresponding periodic Sobolev space H.'(—m, )

2. Then leverage analogous approximation error bounds established for
the case of trigonometric basis functions
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach

Reciprocal Relations & Economization of Power Series
Consider an approximation of u € L2(/) in terms of a truncated
Chebyshev series (expansion coefficients as the unknowns)
un(x) = D240 ik Tk(x)
Cancel the residual Ry = u — upn on the set of

GAUSS-LOBATTO-CHEBYSHEV collocation points x;, j =0,..., N
(one could choose other sets of collocation points as well)

N
u(x;) = Zf’ka(Xj), j=0,...,N
k=0

Noting that Tj(x;) = cos (k cosfl(cos(%))> = cos(k%) and

denoting u; £ u(x;) we obtain
N .
N T .
uj = kgoukcos(kN>, j=0,...,N

The above system of equations can be written as U = TU, where U
and U are vectors of grid values and expansion coefficients,
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» In fact, the matrix 7 is invertible and

B 2 knj ,
N, == hiies k=0,....N
[T ]Jk EJE[(N cos ( N ) 5 /s 07 )

Note that this expression is nothing else than the COSINE
TRANSFORM of U which can be very efficiently evaluated using a
COSINE FF'T
» The same expression can be obtained by
» multiplying each side of u; = ZLV o Uk Ti(x;) by M
» summing the resulting expression from j =0 to j = N
» using the DISCRETE ORTHOGONALITY RELATION

N2j— 0 z LT (§)Ti(§) = TS0k



Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» Note that the expression for the DISCRETE CHEBYSHEV
TRANSFORM

can also be obtained by using the Gauss-Lobatto-Chebyshev
quadrature to approximate the continuous expressions

2 1
= — uTpwdx, k=0,...,N,
TCk J—1

Such an approximation is EXACT for u € Py

» Analogous expressions for the Discrete Chebyshev Transforms can be
derived for other set of collocation points (Gauss, Gauss-Radau)

» Note similarities with respect to the case periodic functions and the
Discrete Fourier Transform
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

» As was the case with Fourier spectral methods, there is a very close
connection between COLLOCATION-BASED INTERPOLATION and
(GALERKIN APPROXIMATION

» DISCRETE CHEBYSHEV TRANSFORM can be associated with an
INTERPOLATION OPERATOR Pc : CO(1) — RN defined such that
(Pcu)(xj) = u(x;), j=0,..., N (where x; are the Gauss-Lobatto
collocation points)

Theorem
Let s > % and o be given and 0 < o <'s. There exists a constant C such
that

|u— Pcullow < CN%isH””sw

for all u € H:(1).

Outline of the Proof.

Changing the variables to #i(f) = u(cos(#)) we convert this problem to a
problem already analyzed in the context of the Fourier interpolation for
periodic functions O
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

Relation between the GALERKIN and COLLOCATION coefficients, i.e.,

2 1
o= — u(x) Tr(x)w(x) dx, k=0,...,N
TCk J_1
N .
2 1 kmj
~AC — T —— k = O PR N
uy fikN JXZ;EJ uj COS( N > 5 ) ’

» Using the representation u(x) = >/2, &f Ty(x) in the latter
expression and invoking the discrete orthogonallty relation we obtain

N N o N
AC 2 e 1 2 . 1
p ﬂZu/ |:ZC_TI<(XJ')T/(XJ‘) + =N Z o [Zqu()g)T/()(j)] 7

1=0 j=0 I=N+1 j=0
A€
=10 —_— e
: v 203w
I=N+1
N J jin
where Cy = Ti(x) Ti(x) cos | —
’ z 05) i) z cos (97 ) cos (47

j= 0 € 0 €

N
1 —
2 j;o fl {COS (%jﬂ) e (%”H

J
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» Using the identity
N .
3 cos (P) -
- N
Jj=0

we can calculate Cy; which allows us to express the relation between
the Galerkin and collocation coefficients as follows

N+1, ifp=2mN, m=0,+1,42,...

1
5[1 +(—1)7] otherwise

ac 1 — . — .
O = g+ — Z Ugromn + Z 0 ke omn
m=1 m=1
2mN>N—k 2mN>N+k
> The terms in square brackets represent the ALTIASING ERRORS .
Their origin is precisely the same as in the Fourier (pseudo)-spectral
method.
» Aliasing errors can be removed using the 3/2 APPROACH in the same
way as in the Fourier (pseudo)-spectral method
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» expressing the first N Chebyshev polynomials as functions of xX,

k=1,....N To(x) =1,
Ti(x) = x,
To(x) =2x> -1,

T3(x) = 4x° — 3x,

Ta(x) = 8x* —8x>+1
which can be written as V' = KX , where [V], = Tx(x), [X]x = x¥,
and K is a LOWER-TRIANGULAR matrix

» Solving this system (trivially!) results in the following RECIPROCAL
RELATIONS 1= To(x),

x = T1(x),
X = 2[To(x) + Ta()]
= 13T + To()],

1
X = §[3T0(X) + 4T(x) + Ta(x)]



Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

> Find the best polynomial approximation of order 3 of f(x) = €* on [—1,1]

» Construct the (Maclaurin) expansion

1 1 1
X —1 -2 ) 4
€ +X+2X +6X +24X+

> Rewrite the expansion in terms of CHEBYSHEV POLYNOMIALS using the
reciprocal relations

81 9 13 1 1
x = ST 2T b - ~T =
e =g 100 T g Tl + 5 T() + 55 Ts(x) + 1

T4(X) + ...
» Truncate this expansion to the 37 order and translate the expansion back to
the x* representation

» Truncation error is given by the magnitude of the first truncated term; Note
that the CHEBYSHEV EXPANSION COEFFICIENTS are much smaller than
the corresponding TAYLOR EXPANSION COEFFICIENTS !

» How is it possible — the same number of expansion terms, but higher
accuracy?

B. Protas MATH745, Fall 2018



Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Assume function approximation in the form up(x) = ZLV:o i T (x)

» First, note that CHEBYSHEV PROJECTION and DIFFERENTIATION
do not commute, i.e., PN(%) # d%'((PNu)

/ /
Tk+1 Tk—l

» Sequentially applying the recurrence relation 2T, = TIL — Rop we
obtain
Lo k—1
Ti(x) =2k Y  ———Ti 1-2p(x), where K = }
S5 Ck-1-2p 2
» Consider the first derivative
N N
() = Y7 i Th() = Y i Tu(x)
k=0 k=0

where, using the above expression for T, (x), we obtain the expansion
coefficients as

N
1) 2 Z N (1)
Uk = pupa k:O7"'7N_15 and uN =0
Ck p=k+1
(p-+k) odd
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Spectral Differentiation

Chebyshev Approximation (1) Differentiation in Real Space

» Spectral differentiation (with the expansion coefficients as unknowns)
can thus be written as

oM =D,
where U = [ig ..., o] 7, OW = [a{Y ... 2’17, and D is an
UPPER-TRIANGULAR matrix with entries deduced based on the
previous expression

» For the second derivative one obtains similarly
N

ui(x) = 3" 0 Tu(x)

k=0

N
1
0 == 3 p(p?— ki, k=0,...,N=2

Ck
p=k+2
(p+k)even

and 0 =22 =0

> QUESTION — What is the structure of the second-order

differentiation matrix?



Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Assume the function u(x) is approximated in terms of its nodal
values, i.e., N

u(x) = un(x) = Z u(x;)G(x),

Jj=0 .
where {x;} are the GAUSS-LOBATTO-CHEBYSHEV points and Cj(x)
are the associated CARDINAL FUNCTIONS

: 1—-x2) dTn(x) 2 1
Ci(x) = (—1y*! ( =Y —Tnx)T,
J(X) ( ) CJ'N2(X*XJ‘) dx ijm Opm m(XJ) m(X)a
where
_ 2 forj=0,N, B 2 forj=N,
PPT 1 forj=1,...,N—1" 971 for j=0,...,N—1

» The DIFFERENTIATION MATRIX D(P) relating the nodal values of

the p-th derivative u(p) to the nodal values of u is obtained by
differentiating the cardmal function approprlate number of times

d(”)Ckx _
“W(’Q‘)-ZTJ Z kUXk Jj=0,...,N
k=0
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Expressions for the entries of the DIFFERENTIATION MATRIX dj(kl)

at the the GAUSS-LOBATTO-CHEBYSHEV collocation points

G (-1 j+k
L ) A S

Ik Ck Xj — Xk
dV = I 1<j<nN-1,
o 2(1-x7)

2N% +1

1 1
o) = —algy = 205

» Thus in the matrix (operator) notation
U =DU

> Note that Rows of the differentiation matrix D are in fact equivalent
to N-th order asymmetric finite-difference formulas on a nonuniform
grid; in other words, spectral differentiation using nodal values as
unknowns is equivalent to finite differences employing ALL N GRID
POINTS AVAILABLE
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Expressions for the entries of SECOND-ORDER DIFFERENTIATION
MATRIX dj(,f) at the the GAUSS-LOBATTO-CHEBYSHEV collocation

points (U2 = DR)V)

2) (,1)J'+k xj2 + xjxk — 2
T (=X —x)?

2) (N2—1)(1—x)+3

1<j<N-1,0<k<N, j#k

( ,
ORI 1<j<N-1
k 2 _ _
o) _ 2(Z1F @M+ 1A -x) —6 1<k<N
3 <k (1*Xk)2
_ 1\N+k 2 —
FOC U CE TR P
3 Ck (1+Xk)2
@) _ 4o _ N -1
dsp
NN 15
(2) _ N (1) 4(1)
» Note that djk Zp:o djp dpk

» Interestingly, D? is not a SYMMETRIC MATRIX
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Consider an ELLIPTIC BOUNDARY VALUE PROBLEM (BVP) :

—vu" +au + bu = f, in [—1,1]
a_u+pB_u=g_ x=-1
ayutBiu =gy x=1

» Chebyshev polynomials do not satisfy homogeneous boundary
conditions, hence standard Galerkin approach is not directly
applicable.

» BASIS RECOMBINATION :

» Convert the BVP to the corresponding form with HOMOGENEOUS
BOUNDARY CONDITIONS
» Take linear combinations of Chebyshev polynomials to construct a new
basis satisfying HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS
er(£1) =0
Ti(x) — To(x) = T — 1, k — even
Pr(x) =

Ti(x) — T1(x), k — odd

Note that the new basis preserves orthogonality

B. Protas MATH745, Fall 2018



Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» THE TAU METHOD (Lanczos, 1938) consists in using a Galerkin
approach in which explicit enforcement of the boundary conditions
replaces projections on some of the test functions

» Consider the residual
Rn(x) = —vup + aupy + buy — f,

where uy(x) = ZLV:O Uk Tr(x)
» Cancel projections of the residual on the first N — 2 basis functions

N 1 1
(Ru, Ti)o = > (—vi® + a0l + biw) / Ti Tiw dx — / fTwdx, 1=0,...,N -2
k=0 -1 -1

» Thus, using orthogonality, we obtain
vt + a0 + biy = F, k=0,...,N—2
where f = f_ll f Ty w dx
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Noting that Tx(£1) = (£1)¥ and T} (£1) = (£1)k+1k2, the
BOUNDARY CONDITIONS are enforced by supplementing the residual
equations with N

> (=D o =B k)i =g
k=0

N
Z(—l)k(%r + B k) = g4
k=0

» Expressing ﬁ,(f) and l’,\ll((l) in terms of iy via the Chebyshev spectral

differentiation matrices we obtain the following system
AU=F

where U = [to,...,0n]T, F = [IA‘O, e ?N_g,g,,g+] and the matrix
A is obtained by adding the two rows representing the boundary
conditions (see above) to the matrix A; = —vID? + alD + bl.

» When the domain boundary is not just a point (e.g., in 2D / 3D),

formulation of the Tau method becomes somewhat more involved
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Consider the residual
Rn(x) = —vup + aupy + buy — f,

where uy(x) = Soh_q ik Tu(x)

» Cancel this residual at N — 1 GAUSS-LOBATTO-CHEBYSHEV
collocation points located in the interior of the domain

—vuy(x;) + aup(xj) + bun(x) = f(x;), j=1,...,N—1
» Enforce the two boundary conditions at endpoints
a—un(xn) + B-uy(xn) = g-
aun(xo) + Bruy(x0) = g-

Note that this shows the utility of using the
GAUSS-LOBATTO-CHEBYSHEV collocation points
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method
Collocation Method

Implementation of Boundary Conditions

» Consequently, the following system of N + 1 equations is obtained

N
N (~vdD + ad)un(xg) + bun(x) = F(x). j=1,....N~1
k=0

N
a_uy(x) + 8- di)un(xe) = g-
k=0

N
arun(xo) + By Z déi) un(xk) = g+
k=0
which can be written as A U = F , where [Ac]jx = [Aco]jk,
j,k=1,...,N—1 with A given by
Aco = (—vD? 4 aD + bI)U

and the BOUNDARY CONDITIONS above added as the rows 0 and N
of A,
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Note that the matrix corresponding to this system of equations may
be POORLY CONDITIONED , so special care must be exercised when
solving this system for large N.

» Similar approach can be used when the nodal values u(x;), rather
than the Chebyshev coefficients @i, are unknowns
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

When the equation has NONCONSTANT COEFFICIENTS , similar
difficulties as in the Fourier case are encountered (evaluation of
CONVOLUTION SUMS )

» Consequently, the COLLOCATION (pseudo-spectral) approach is
preferable along the guidelines laid out in the case of the Fourier
spectral methods

» Assuming a = a(x) in the elliptic boundary value problem, we need to
make the following modification to A.:

o= (—vD?+ D + bI)U,

where D' = [a(xj) L ] S k=1,....,N

» For the Burgers equation 0ru + §8Xu - u@fu we obtain at every
time step n
2)\yn+1 _ yyn 1 n
(I-AtvD¥)U"™ =U —EAtIDW,

where [W"]; = [U"];[U"];; Note that an algebraic system has to be
solved at each time step
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method
Implementation of Boundary Conditions Collocation Method

Epilogue — Domain Decomposition

» Motivation:
> treatment of problem in IRREGULAR DOMAINS
» STIFF PROBLEMS
» PHILOSOPHY — partition the original domain € into a number of
SUBDOMAINS {Q,}M_. and solve the problem separately on each
those while respecting consistency conditions on the interfaces
» Spectral Element Method
» consider a collection of problems posed on each subdomain Q,,
Luy,=1"F
Un—1(am) = tm(am), Unm(am+1) = Ums1(am1)

» Transform each subdomain Q,, to I =[-1,1]

> use a separate set of N,, ORTHOGONAL POLYNOMIALS to approximate
the solution on every subinterval

» boundary conditions on interfaces provide coupling between problems
on subdomains
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