PART III REVIEW OF (ABSTRACT) Approximation Theory

Although this may seem a paradox, all exact science is dominated by the idea of approximation. — Bertrand Russell (1872–1970)

[Basic Concepts](#page-2-0)

[Inner Products, Unitary and Hilbert Spaces](#page-2-0) **[Orthogonality](#page-3-0)**

[Approximation in Hilbert Spaces](#page-4-0)

[Fourier Series](#page-4-0) [Best Approximations](#page-8-0) [Rates of Convergence](#page-10-0)

[Basic Concepts](#page-2-0) [Approximation in Hilbert Spaces](#page-4-0) [Inner Products, Unitary and Hilbert Spaces](#page-2-0) **[Orthogonality](#page-3-0)**

 \triangleright Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:

$$
\blacktriangleright (x, x) \text{ is real}, (x, x) \ge 0, (x, x) = 0 \text{ only if } x = 0,
$$

$$
\blacktriangleright (x,y) = \overline{(y,x)},
$$

•
$$
(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 (x_1, y) + \alpha_2 (x_2, y)
$$

- A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x, x)^{1/2}$
- \triangleright A complete unitary space H is called a HILBERT SPACE

- \blacktriangleright Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if $(x, y) = 0$. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- \blacktriangleright The following properties hold:
	- $\rightarrow x \perp 0$ for all $x \in V$
	- $\rightarrow x \perp x$ only if $x = 0$
	- Fif $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(\mathcal{A})$
	- if $x \perp y_n$ ($n = 1, 2, \ldots$) and $y_n \rightarrow y$, then $x \perp y$
	- \triangleright if A is dense in V and $x \perp A$, then $x = 0$
- \triangleright SCHMIDT ORTHOGONALIZATION $-$ Let A be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F}=\{\pmb{e}_i\in\mathsf{V}:\, (\pmb{e}_i,\pmb{e}_j)=\delta_{ij}\}$, such that the linear hulls of $\;\; \mathcal{A}_{k}=\{x_{\!j}:\, j=1,\ldots,k\}\;$ and $\mathcal{F}_k = \{e_{\!} : j = 1, \ldots, k\}$ are the same for all $k.$

[Fourier Series](#page-4-0) [Best Approximations](#page-8-0) [Rates of Convergence](#page-10-0)

Let $\{e_1, e_2, \dots\}$ be an orthonormal system in a Hilbert space H and let H_k be the linear hull of $\{e_1, \ldots, e_k\}$. Then for every $x\in H$ the element $\displaystyle{a=\sum_{j=1}^k (x,e_j)\,e_j\in H_k}$ has the property that $||x - a|| \le ||x - y||$ for all $y \in H_k$. The numbers (x, e_i) are called THE FOURIER COEFFICIENTS relative to the orthonormal system $\{e_1, e_2, \dots\}$. Furthermore, from $||x - a||^2 \ge 0$ follows the BESSEL INEQUALITY :

$$
\sum_{j=1}^k |(x,e_j)|^2 \leq (x,x)
$$

If A is a given subspace in a Hilbert space H, then

$$
\mathcal{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathcal{A}\}
$$

is a closed linear subspace of H . It is, therefore, itself a Hilbert space and is called THE ORTHOGONAL COMPLEMENT OF $\mathcal A$

[Fourier Series](#page-4-0) [Best Approximations](#page-8-0) [Rates of Convergence](#page-10-0)

If H_1 is a closed linear subspace of a Hilbert space H and H_2 is its orthogonal complement, then every $x \in H$ can be uniquely represented in the form

$$
x = x_1 + x_2, \ (x_1 \in H_1, x_2 \in H_2)
$$

We write $H = H_1 \oplus H_2$ and call H an orthogonal sum of H_1 and H_2 .

 \blacktriangleright Since

$$
||x - x_1|| = \rho(x, H_1) = \inf_{y_1 \in H_1} {||x - y_1||},
$$

$$
||x - x_2|| = \rho(x, H_2) = \inf_{y_2 \in H_2} {||x - y_2||},
$$

one calls x_1 and x_2 the ORTHOGONAL PROJECTIONS of x on H_1 and H_2 , respectively.

- Exercice Let $\{e_1, e_2, \dots\}$ be a countable orthonormal system in a Hilbert $\sum_{j=1}^{\infty} (x,e_j)$ $e_j = \lim_{n\to\infty} \sum_{j=1}^n (x,e_j)$ e_j defines an element of H for space H . By Bessel inequality, the series every $x \in H$. This is called THE FOURIER SERIES OF x
- \blacktriangleright The partial sum $s_n = \sum_{j=1}^n (x,e_j)$ e_j is the orthogonal projection of x on the subspace $H_n = \mathcal{L}(\{e_1, \ldots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in H, i.e., $\overline{\mathcal{L}(\{e_1,\ldots,e_k,\ldots\})} = H$, then the Fourier series for any $x \in H$ converges to x

 \triangleright An orthonormal system is said to be CLOSED if THE PARCEVAL **EQUATION**

$$
\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2
$$

holds for every $x \in H$. An orthonormal system is closed IFF it is complete.

 \triangleright An orthonormal system in a separable Hilbert space is at most countable

[Fourier Series](#page-4-0) [Best Approximations](#page-8-0) [Rates of Convergence](#page-10-0)

 \triangleright Statement of a GENERAL APPROXIMATION PROBLEM IN A HILBERT SPACE H — consider a fixed element $f \in H$ and $\mathcal{G}_n \subset H$ which is a finite–dimensional subspace of H (with the same norm). Want to find an element $\hat{g} \in \mathcal{G}_n$ such that

$$
D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|
$$

The element \hat{g} is called THE BEST APPROXIMATION and the number $D(f, \mathcal{G}_n, \|\cdot\|)$ is called THE DEFECT.

^I Issues:

- Does the best approximation \hat{g} exist?
- \triangleright Can \hat{g} be uniquely determined?
- \blacktriangleright How can \hat{g} be computed?

[Fourier Series](#page-4-0) [Best Approximations](#page-8-0) [Rates of Convergence](#page-10-0)

 \triangleright The approximation problem in a Hilbert space H has a unique solution \hat{g} for which $(\hat{g} - f, h) = 0$ holds for all $h \in \mathcal{G}_n$. If $\{e_1, \ldots, e_n\}$ is a basis of \mathcal{G}_n , then

$$
\hat{g} = \sum_{j=1}^n c_j^{(n)} e_j
$$

with

$$
\sum_{j=1}^{n} c_j^{(n)}(e_j, e_k) = (f, e_k), \ \ j = 1, \ldots, n \qquad (\star)
$$

and the approximation error is

$$
||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 + ||\hat{g}||^2 - 2\sum_{j=1}^n c_j^{(n)}(e_j, f)
$$

- ► Thus, the Fourier coefficients $c_i^{(n)}$, $j = 1, \ldots, n$, can $j_j^{(n)},\,j=1,\ldots,n,$ can be calculated by solving an algebraic system (\bigstar) with the Hermitian, positive–definite matrix $A_{jk} = (e_j, e_k)$ (the so called \overline{GRAM} MATRIX).
- If the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$

 \blacktriangleright Assume that $c_j,$ $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$

- \triangleright The RATE OF CONVERGENCE of this approximation is:
	- \blacktriangleright ALGEBRAIC with order k if for $i >> 1$

$$
\lim_{j\to\infty}|c_j|j^k<\infty, \quad \text{or, equivalently,} \ \ |c_j|\sim \mathcal{O}(j^{-k})
$$

EXPONENTIAL OR SPECTRAL with index r if for ANY $k > 0$

 $\lim\limits_{j\to\infty}|c_j|j^k<\infty, \quad \text{or, equivalently,} \ \ |c_j|\sim \mathcal{O}(\exp(-qj^r)), \ \ r,q\in\mathbb{R}^+$

spectral convergence can be:

- \triangleright SUBGEOMETRIC when $r < 1$,
- \blacktriangleright GEOMETRIC when $r = 1$, and
- SUPERGEOMETRIC otherwise