PART III REVIEW OF (ABSTRACT) APPROXIMATION THEORY

Although this may seem a paradox, all exact science is dominated by the idea of approximation. — Bertrand Russell (1872–1970)

Agenda

Basic Concepts

Inner Products, Unitary and Hilbert Spaces Orthogonality

Approximation in Hilbert Spaces

Fourier Series Best Approximations Rates of Convergence Basic Concepts Inner Products, Unitary and Hilbert Spaces Orthogonality

Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements x, y ∈ V with the following properties:

•
$$(x, x)$$
 is real, $(x, x) \ge 0$, $(x, x) = 0$ only if $x = 0$,

•
$$(x,y) = \overline{(y,x)}$$
,

$$\bullet (\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$$

- ► A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x, x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL (x ⊥ y) if (x, y) = 0. A countable set of elements x₁, x₂,..., x_k,... is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if (x_i, x_j) = δ_{ij}
- The following properties hold:
 - $x \perp 0$ for all $x \in V$
 - $x \perp x$ only if x = 0
 - if x ⊥ A, i.e., x ⊥ y for all y ∈ A ⊆ V, then x is also orthogonal to the linear hull L(A)
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- SCHMIDT ORTHOGONALIZATION Let A be a set of countably many linearly independent elements x₁, x₂,..., x_k,... of a Hilbert space H. Then there is an orthonormal system F = {e_i ∈ V : (e_i, e_j) = δ_{ij}}, such that the linear hulls of A_k = {x_j : j = 1,..., k} and F_k = {e_j : j = 1,..., k} are the same for all k.

Fourier Series Best Approximations Rates of Convergence

▶ Let $\{e_1, e_2, ...\}$ be an orthonormal system in a Hilbert space H and let H_k be the linear hull of $\{e_1, ..., e_k\}$. Then for every $x \in H$ the element $a = \sum_{j=1}^k (x, e_j) e_j \in H_k$ has the property that $||x - a|| \le ||x - y||$ for all $y \in H_k$. The numbers (x, e_j) are called THE FOURIER COEFFICIENTS relative to the orthonormal system $\{e_1, e_2, ...\}$. Furthermore, from $||x - a||^2 \ge 0$ follows the BESSEL INEQUALITY :

$$\sum_{j=1}^k |(x,e_j)|^2 \leq (x,x)$$

• If A is a given subspace in a Hilbert space H, then

$$\mathcal{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathcal{A}\}$$

is a closed linear subspace of H. It is, therefore, itself a Hilbert space and is called THE ORTHOGONAL COMPLEMENT OF A

Fourier Series Best Approximations Rates of Convergence

If H₁ is a closed linear subspace of a Hilbert space H and H₂ is its orthogonal complement, then every x ∈ H can be uniquely represented in the form

$$x = x_1 + x_2$$
, $(x_1 \in H_1, x_2 \in H_2)$

We write $H = H_1 \oplus H_2$ and call H an orthogonal sum of H_1 and H_2 .

Since

$$\|x - x_1\| = \rho(x, H_1) = \inf_{y_1 \in H_1} \{\|x - y_1\|\},\$$

$$\|x - x_2\| = \rho(x, H_2) = \inf_{y_2 \in H_2} \{\|x - y_2\|\},\$$

one calls x_1 and x_2 the ORTHOGONAL PROJECTIONS of x on H_1 and H_2 , respectively.

Fourier Series Best Approximations Rates of Convergence

- ▶ Let $\{e_1, e_2, ...\}$ be a countable orthonormal system in a Hilbert space *H*. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) e_j = \lim_{n\to\infty} \sum_{j=1}^{n} (x, e_j) e_j$ defines an element of *H* for every $x \in H$. This is called THE FOURIER SERIES OF x
- ► The partial sum s_n = ∑_{j=1}ⁿ(x, e_j) e_j is the orthogonal projection of x on the subspace H_n = L({e₁,..., e_n}). One has ||s_n||² = ∑_{j=1}ⁿ |(x, e_j)|²
- ▶ If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in H, i.e., $\overline{\mathcal{L}(\{e_1, \ldots, e_k, \ldots\})} = H$, then the Fourier series for any $x \in H$ converges to x

► An orthonormal system is said to be CLOSED if THE PARCEVAL EQUATION

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in H$. An orthonormal system is closed IFF it is complete.

 An orthonormal system in a separable Hilbert space is at most countable

Fourier Series Best Approximations Rates of Convergence

▶ Statement of a GENERAL APPROXIMATION PROBLEM IN A HILBERT SPACE H — consider a fixed element $f \in H$ and $\mathcal{G}_n \subseteq H$ which is a finite-dimensional subspace of H (with the same norm). Want to find an element $\hat{g} \in \mathcal{G}_n$ such that

$$D(f,\mathcal{G}_n,\|\cdot\|) \triangleq \inf_{g\in\mathcal{G}_n} \{\|f-g\|\} = \|f-\hat{g}\|$$

The element \hat{g} is called THE BEST APPROXIMATION and the number $D(f, \mathcal{G}_n, \|\cdot\|)$ is called THE DEFECT.

Issues:

- Does the best approximation ĝ exist?
- Can \hat{g} be uniquely determined?
- How can ĝ be computed?

Fourier Series Best Approximations Rates of Convergence

The approximation problem in a Hilbert space *H* has a unique solution ĝ for which (ĝ − f, h) = 0 holds for all h ∈ G_n. If {e₁,..., e_n} is a basis of G_n, then

$$\hat{g} = \sum_{j=1}^n c_j^{(n)} e_j$$

with

$$\sum_{j=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$

and the approximation error is

n

$$\|f - \hat{g}\|^2 = (f - \hat{g}, f - \hat{g}) = \|f\|^2 + \|\hat{g}\|^2 - 2\sum_{j=1}^n c_j^{(n)}(e_j, f)$$

- Thus, the Fourier coefficients c_j⁽ⁿ⁾, j = 1,..., n, can be calculated by solving an algebraic system (★) with the Hermitian, positive-definite matrix A_{jk} = (e_j, e_k) (the so called GRAM MATRIX).
- ► If the basis {e₁,..., e_n} is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as c_k⁽ⁿ⁾ = (f, e_k)

Assume that c_j, j = 1, 2, ... are the Fourier coefficients related to an approximation of some function f = ∑ⁿ_{j=1} c_je_j

- ► The RATE OF CONVERGENCE of this approximation is:
 - ALGEBRAIC with order k if for j >> 1

$$\lim_{j o \infty} |c_j| j^k < \infty, \quad$$
 or, equivalently, $|c_j| \sim \mathcal{O}(j^{-k})$

• EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

 $\lim_{j \to \infty} |c_j| j^k < \infty, \quad \text{or, equivalently,} \ |c_j| \sim \mathcal{O}(\exp(-qj^r)), \ r,q \in \mathbb{R}^+$

spectral convergence can be:

- SUBGEOMETRIC when r < 1,
- GEOMETRIC when r = 1, and
- SUPERGEOMETRIC otherwise