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Dirichlet Boundary Conditions
Neumann Boundary Conditions
Compact Schemes

I Solving a two-point boundary value problem with
Dirichlet Boundary Conditions :

d2y

dx2
= g for x ∈ (0, 2π)

y(0) = y(2π) = 0

I Finite-difference approximation:
I Second-order center difference formula for the interior nodes:

yj+1 − 2yj + yj−1

h2
= gj for j = 1, . . . ,N

where h = 2π
N+1 and xj = jh

I Endpoint nodes:
y0 = 0 =⇒ y2 − 2y1 = h2g1

yN+1 = 0 =⇒ −2yN + yN−1 = h2gN

I Tridiagonal algebraic system — solved very efficiently with the
Thomas algorithm (a version of the Gaussian elimination)
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I Solving a two-point boundary value problem with
Neumann Boundary Conditions :

d2y

dx2
= g for x ∈ (0, 2π)

dy

dx
(0) =

dy

dx
(2π) = 0

I Finite-difference approximation:
I Second-order center difference formula for the interior nodes:

yj+1 − 2yj + yj−1

h2
= gj for j = 1, . . . ,N

I First-order Forward/Backward Difference formulae to
re–express endpoint values:

y1 − y0

h
= 0 =⇒ y0 = y1

yN+1 − yN

h
= 0 =⇒ yN+1 = yN

First-order only — degraded accuracy!
I Tridiagonal algebraic system — Is there any problem? Where?
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I In order to retain the second-order accuracy in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

y ′0 =
−y2 + 4y1 − 3y0

2h
= 0 =⇒ y0 =

1

3
(−y2 + 4y1)

I The first row thus becomes

2

3
y2 −

2

3
y1 = h2g1

Second–order accuracy recovered!
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I Compact Stencils — stencils based on three grid points
(in every direction) only: {xj+1, xj , xj−1} at the j − th node

I Is is possible to obtain higher (then second) order of accuracy
on compact stencils? — yes!

I Consider the central difference approximation to the equation
d2y
dy2 = g

yj+1 − 2yj + yj−1

h2
− h2

12
y

(iv)
j +O(h4) = gj
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I Re-express the error term h2

12 y
(iv)
j using the equation in question:

h2

12
y

(iv)
j =

h2

12
g ′′j =

h2

12

[
gj+1 − 2gj + gj−1

h2
− h2

12
g

(iv)
j +O(h4)

]

I Inserting into the original finite-difference equation:

yj+1 − 2yj + yj−1

h2
= gj +

gj+1 − 2gj + gj−1

12
+O(h4)

I Slight modification of the RHS =⇒ fourth-order
accuracy!!!
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I Compact Finite Difference Schemes —

I Advantages:
I Increased accuracy on compact stencils

I drawbacks:
I need to be tailored to the specific equation solved

I can get fairly complicated for more complex equations
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I Consider the following Cauchy problem :

dy

dt
= f (y , t) with y(t0) = y0

The independent variable t is usually referred to as time .

I Equations with higher-order derivatives can be reduced to
systems of first-order equations

I Generalizations to systems of ODEs straightforward

I When the RHS function does not depend on y , i.e.,
f (y , t) = f (t),
solution obtained via a quadrature

I Assume uniform time-steps ( h is constant )
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I accuracy — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the global error

(global error) = (local error)× (# of time steps),

rather than the local error .

I stability — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.
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Model Problem (I)

I Stability of various numerical schemes is usually analyzed
by applying these schemes to the following linear model :

dy

dt
= λy = (λr + iλi )y with y(t0) = y0,

which is stable when λr <= 0 .

I Exact solution:

y(t) = y0eλt =

(
1 + λh +

λ2h2

2
+
λ3h3

6
+ . . .

)
y0
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Model Problem (II)

I Motivation — consider the following
advection-diffusion PDE :

∂u

∂t
+ c

∂u

∂x
− a

∂2u

∂x2
= 0

Taking Fourier transform yields (k is the wavenumber):

dûk

dt
+ c i k ûk + a k2 ûk = 0

where
I the real term a k2 ûk represents diffusion

I the imaginary term c i k ûk represents advection
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Euler Explicit Scheme (I)

I Consider a Taylor series expansion

y(tn+1) = y(tn) + hy ′(tn) +
h2

2
y ′′(tn) + . . .

Using the ODE we obtain

y ′ =
dy

dt
= f

y ′′ =
dy ′

dt
=

df

dt
= ft + ffy

I Neglecting terms proportional to second and higher powers of
h yields the Explicit Euler Method

yn+1 = yn + hf (yn, tn)

I Retaining higher–order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with
desirable stability properties.
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Euler Explicit Scheme (II)

I Local error analysis:

yn+1 = (1 + λh) yn + [O(h2)]

I Global error analysis:

(global error) = Ch2 · N = Ch2 · T

h
= C ′h

Thus, the scheme is
I locally second-order accurate

I globally (over the interval [t0, t0 + Nh]) first-order accurate
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Euler Explicit Scheme (III)

I Stability (for the model problem)

yn+1 = yn + λhyn = (1 + λh)yn

I Thus, the solution after n time steps

yn = (1 + λh)ny0 , σny0 =⇒ σ = 1 + λh

I For large n, the numerical solution remains stable iff

|σ| ≤ 1 =⇒ (1 + λr h)2 + (λi h)2 ≤ 1

I conditionally stable for real λ

I unstable for imaginary λ
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Euler Implicit Scheme (I)
I Implicit Schemes — based on approximation of the RHS that

involve f (yn+1, t), where yn+1 is the unknown to be determined

I Implicit Euler Scheme — obtained by neglecting second and
higher-order terms in the expansion:

y(tn) = y(tn+1)− hy ′(tn+1) +
h2

2
y ′′(tn+1)− . . .

I Upon substitution dy
dt

∣∣∣
tn+1

= f (yn+1, tn+1) we obtain

yn+1 = yn + hf (yn+1, tn+1)

I The scheme is
I locally second–order accurate

I globally (over the interval [t0, t0 + Nh]) first–order accurate
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Euler Implicit Scheme (II)

I Stability (for the model problem):

yn+1 = yn + λhyn+1 =⇒ yn+1 = (1− λh)−1yn

yn+1 =

(
1

1− λh

)n

y0 , σny0 =⇒ σ =
1

1− λh

|σ| ≤ 1 =⇒ (1− λr h)2 + (λi h)2 ≥ 1

I Implicit Euler scheme is thus stable for
I all stable model problems
I most unstable model problems

I Remark: When solving systems of ODEs of the form
y = A(t)y, each implicit step requires solution of an algebraic
system: yn+1 = (I − hA)−1yn

I Implicit schemes are generally hard to implement for nonlinear
problems
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Crank-Nicolson Scheme (I)

I Obtained by approximating the formal solution of the ODE
yn+1 = yn +

∫ tn+1

tn
f (y , t) dt using the trapezoidal quadrature :

yn+1 = yn +
h

2
[f (yn, tn) + f (yn+1, tn+1)]

I The scheme is
I locally third–order accurate

I globally (over the interval [t0, t0 + Nh]) second–order accurate
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Crank-Nicolson Scheme (II)

I Stability (for the model problem):

yn+1 = yn +
λh

2
(yn+1 + yn) =⇒ yn+1 =

(
1 + λh

2

1− λh
2

)
yn

yn+1 =

(
1 + λh

2

1− λh
2

)n

y0 , σny0 =⇒ σ =
1 + λh

2

1− λh
2

|σ| ≤ 1 =⇒ <(λh) ≤ 0

I Stable for all model ODEs with stable solutions
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Leapfrog Scheme (I)

I Leapfrog as an example of a two-step method :

yn+1 = yn−1 + 2 h λ yn

I Characteristic equation for the amplification factor
(yn = σny0)

σ2 − 2 h λσ − 1 = 0

where roots give the amplification factors:

σ1 = λh +
√

1 + λ2h2 ' 1 + λh +
λ2h2

2
+ . . . = eλh +O(h3)

σ2 = λh −
√

1 + λ2h2 ' −(1− λh +
λ2h2

2
− . . . ) = −e−λh +O(h3)

I Thus, the scheme is
I locally third–order accurate
I globally (over the interval [t0, t0 + Nh]) second–order accurate
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Leapfrog Scheme (II)

I Stability for diffusion problems ( λ = λr ):

σ1 = λh +
√

1 + λ2
r h2 > 1 for all h > 0

Thus the scheme is unconditionally unstable for diffusion
problems!

I Stability for advection problems ( λ = iλi ):

σ2
1/2 = 1 (!!!) for h <

1

|λi |

Thus, the scheme is conditionally stable and non-diffusive
for advection problems!

I Question — analyze dispersive (i.e., related to arg(σ)) errors of
the leapfrog scheme.
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Multistep Procedures (I)

I General form of a multistep (ξ, ζ) procedure :

p∑
j=0

αj yn+j = h

q∑
j=0

βj f (yn+j , tn+j )

with characteristic polynomials

ξp(z) = αpzp + αp−1zp−1 + · · ·+ α0

ζq(z) = βqzq + βq−1zq−1 + · · ·+ β0

I if p > q — explicit scheme

I if p ≤ q — implicit scheme

I Consistency: h→ 0 =⇒ Local Error→ 0
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Multistep Procedures (II)

Theorem

I Consider an initial-value problem dy
dt = f (t, y), y(0) = y0,

where f : [0,T ]× Rn → Rn is r times continuously
differentiable w. r. t. both variables. A (ξ, ζ) –procedure
converges uniformly in [0,T ], i.e.,
limh→0 maxtn∈[0,T ] ‖yn − y(tn)‖ = 0 if:

1. the following consistency conditions are verified: ξ(1) = 0 and
ξ′(1) = ζ(1) ( consistency condition )

2. all roots of the polynomial ξ(z) are such that |zi | ≤ 1 and the
roots with |zk | = 1 are simple ( stability condition )
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Multistep Procedures (III)

Proof (part 1.)

I Taylor expansions

y(t + j h) =
r∑

k=0

y (k)(t)

k!
jk hk +O(hr+1)

y ′(t + j h) =

r−1∑
k=0

y (k+1)(t)

k!
jk hk +O(hr ) =

r∑
k=1

k
y (k)(t)

k!
jk−1 hk−1 +O(hr )

I Error E (t, h) (s = max{p, q})

E(t, h) =
s∑

j=0

αj y(t + j h)− h
s∑

j=0

βj f (t + j h, y(t + j h)) =
s∑

j=0

[
αj y(t + j h)− h βj y ′(t + j h)

]

=
r∑

k=0

 s∑
j=0

jkαj − k jk−1 βj


︸ ︷︷ ︸

=0 (?)

y (k)(t)

k!
hk +O(hr+1)
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Multistep Procedures (IV)

Proof (Cont.)

I

(?)
s∑

j=0

jkαj − k jk−1 βj = 0, k = 0, . . . , r

I For the global error to vanish we need r = 1, so that O(h2)

k = 0 :
s∑

j=0

αj = 0 =⇒ ξ(1)= 0

k = 1 :
s∑

j=0

j αj =
s∑

j=0

βj =⇒ ξ′(1)= ζ(1)
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Runge-Kutta Methods (I)
I General form of a fractional step method :

yn+1 = yn + γ1 h k1 + γ2 h k2 + γ3 h k3 + . . .

where

k1 = f (yn, tn)

k2 = f (yn + β1hk1, tn + α1h)

k3 = f (yn + β2hk1 + β3hk2, tn + α2h)

...

I Choose γi , βi and αi to match as many expansion coefficients as
possible in

y(tn+1) = y(tn) + hy ′(tn) +
h2

2
y ′′(tn) +

h3

6
y ′′′(tn) . . .

y ′ = f

y ′′ = ft + ffy

y ′′′ = ftt + ft fy 2ffyt + f 2fyt + f 2fyy

I Runge-Kutta methods are self–starting with fairly good stability
and accuracy properties.
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Runge-Kutta Methods (II)
I RK4 — an ODE “workhorse”:

yn+1 = yn +
h

6
k1 +

h

3
(k2 + k3) +

h

6
k4

k1 = f (yn, tn) k2 = f (yn +
h

2
k1, tn+1/2)

k3 = f (yn +
h

2
k2, tn+1/2) k4 = f (yn + hk3, tn+1)

I The amplification factor:

σ = 1 + λh +
λ2h2

2
+
λ3h3

6
+
λ4h4

24

Thus, stability iff |σ| ≤ 1
I Accuracy:

eλh = σ +O(h5)

Thus, the scheme is
I locally fifth–order accurate
I globally (over the interval [t0, t0 + Nh]) fourth–order accurate
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Runge’s Principle

I Let (k + 1) be the order of the local truncation error; denote Y (t, h)
an approximation of the exact solution y(t) computed with the step
size h; then at t = t0 + 2nh:

y(t)− Y (t, h) ' C 2 n hk+1 = C(t − t0)hk

y(t)− Y (t, 2h) ' C n (2h)k+1 = C(t − t0)2k hk

Subtracting:
Y (t, 2h)− Y (t, h) ' C(t − t0)(1− 2k )hk

I Thus, we can obtain an estimate of the absolute error based on
solution with two step–sizes only:

y(t)− Y (t, h) ' Y (t, h)− Y (t, 2h)

2k − 1

I Runge’s principle is very useful for adaptive step size
refinement
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Lax Equivalence Theorem1

I Consider an Initial Value Problem

du

dt
= Lu with u(t0) = u0

and assume that it is well–posed, i.e., it admits solutions which are
unique and stable

I Consider a numerical method defined by a finite–difference operator
C (h) such that the approximate solution is given by

uh(nh) = C(h)nu0, n = 1, 2, . . .

I The above method is consistent iff C(h)−I
h is a convergent

approximation of the operator L
I Lax Theorem — For a consistent difference method

stability is equivalent to convergence
1For a more technical discussion, see $ 5.2 in Atkinson & Han (2001)
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Conservation Properties (I)

I Is Accuracy and Stability all that matters?

I Conservation Properties — conservation by the numerical
method (i.e., in the discrete sense) of various invariants the original
equation may possess

I Remark — conservation properties are particularly relevant for
solution of Hamiltonian / hyperbolic systems

I Example — conservation of the solution norm:
I In the continuous setting (assume u = |u|e iϕ)

du

dt
= iλiu ⇐⇒


d |u|
dt

= 0 =⇒ |u(t)| = |u0|,

dϕ

dt
= λi ,

I In the discrete setting: |uh(nh)| = |uh((n − 1)h)| = · · · = |uh(0)|
Necessary and sufficient condition for discrete conservation: ∃h, |σ(h)| = 1
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Conservation Properties (II)
I Implicit Euler —

|σ| =
∣∣∣ 1

1− iλih

∣∣∣ =
1√

1 + λ2
i h

2
= 1− 1

2
λ2

i h
2 + · · · < 1 for all h

The scheme is thus dissipative (i.e., not conservative)
I Fourth–Order Runge–Kutta —

|σ| =

∣∣∣∣∣1 + iλih −
λ2

i h
2

2
− i

λ3
i h

3

6
+
λ4

i h
4

24

∣∣∣∣∣ =
1

24

√
576− 8λ6

i h
6 + λ8

i h
8

= 1− 1

144
λ6

i h
6 + · · · < 1 for small h

The scheme is thus dissipative (i.e., not conservative)

I Leapfrog — |σ1/2| ≡ 1 for all h < 1
|λi |

The scheme is thus conservative for all time–steps for which it is
stable!!! Leapfrog is an example of a symplectic integrator
which are designed to have good conservation properties.
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I Classification of linear PDEs in 2D: consider u : Ω2 → R and
A,B,C ∈ R such that

A
∂2u

∂x2
+ B

∂2u

∂x ∂y
+ C

∂2u

∂y 2
+ f (x , y , u) = 0

I Elliptic Problems : B2 − 4AC < 0
I Poisson equation: ∂2u

∂x2
+
∂2u

∂y 2
= g(x , y)

I Parabolic Problems : B2 − 4AC = 0
I Heat equation:

∂u

∂t
= a

(
∂2u

∂x2
+
∂2u

∂y 2

)
+ g(x , y)

I Hyperbolic Problems : B2 − 4AC > 0
I Wave equation:

∂2u

∂t2
= a

(
∂2u

∂x2
+
∂2u

∂y 2

)
+ g(x , y)
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I Poisson equation

∆u =
∂2u

∂x2
+
∂2u

∂y 2
= g(x , y) in Ω, Ω ⊂ R2

I Assuming ∆x = ∆y = h, the discrete Laplacian

∆u =
ui+1,j + ui ,j+1 − 4ui ,j + ui−1,j + ui ,j−1

h2
+O(h2)

where ui ,j = u(i∆x , j∆y), i , j = 1, . . . ,N

I Thus

ui+1,j + ui ,j+1 − 4ui ,j + ui−1,j + ui ,j−1 = h2 gi ,j , i , j = 1, . . . ,N

I After incorporating boundary conditions (Dirichlet, Neumann) and
vectorizing the variables ( g̃i+(N−1)j = gi ,j ), we obtain a sparse
algebraic problems with a diagonally-dominant pentadiagonal
matrix =⇒ straightforward to solve
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I Heat equation
∂u

∂t
=
∂2u

∂x2
in [0,T ]× [a, b]

I Crank–Nicolson Method (xj = j∆x ,j = 1, . . . ,M, t = n∆t,
n = 1, . . . ,N):

I spatial derivative:
(
∂2u
∂x2

)n

j
=

un
j+1−2un

j +un
j−1

(∆x)2 +O((∆x)2)

I time derivative:(
∂u

∂t

)n+1

j

=
un+1

j − un
j

∆t
+O(∆t) =

1

2

[(
∂2u

∂x2

)n+1

j

+

(
∂2u

∂x2

)n

j

]
+O((∆t))

un+1
j − un

j =
∆t

2(∆x)2

(
un+1

j+1 − 2un+1
j + un+1

j−1 + un
j+1 − 2un

j + un
j−1

)
+O

(
(∆x)2∆t + (∆t)2

)
I thus, defining r = ∆t

(∆x)2 ,we have at every time step n

−run+1
j+1 + 2(1 + r)un+1

j − run+1
j−1 = run

j+1 + 2(1− r)un
j + run

j−1

which for Un = [un
1 , . . . , u

n
M ]T can be written as an algebraic system

(2I− A)Un+1 = (2I + A)Un , where A is a tridiagonal matrix
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I θ Method
I allow for a more general approximation in time of the RHS (θ ∈ [0, 1])(

∂u

∂t

)n+1

j

=
un+1

j − un
j

∆t
+O(∆t) =

[
θ

(
∂2u

∂x2

)n+1

j

+ (1− θ)

(
∂2u

∂x2

)n

j

]
+O(∆t)

I special cases
I θ = 0 =⇒ Explicit method: Un+1 = A0U

n

I θ = 1
2

=⇒ Crank–Nicolson method (see previous slide)

I θ = 1 =⇒ Implicit method: A1U
n+1 = Un

I Stability:
I The Explicit Scheme is stable for r = ∆t

(∆x)2 <
1
2

I The Crank–Nicolson and Implicit Scheme are stable for all r
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I Wave equation
∂2u

∂t2
=
∂2u

∂x2
in [0,T ]× [a, b]

I Spatial derivative:
(
∂2u
∂x2

)n

j
=

un
j+1−2un

j +un
j−1

(∆x)2 +O((∆x)2)

I Time derivative:(
∂2u

∂t2

)n

j

=
un+1

j − 2un
j + un−1

j

(∆t)2
+O((∆t)2) =

(
∂2u

∂x2

)n

j

un+1
j =

(∆t)2

(∆x)2

(
un

j+1 + un
j−1

)
− un−1

j + 2

(
1− (∆t)2

(∆x)2

)
un

j +O
(
(∆x)2(∆t)2 + (∆t)4

)

I Stability for (∆t)2

(∆x)2 ≤ 1

I Remark: need two initial conditions!

B. Protas MATH745, Fall 2016


	Boundary-Value Problems
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions
	Compact Schemes

	Initial-Value Problems
	Generalis
	Time-Stepping Schemes
	Runge's Principle, Lax Theorem and Conservation Properties

	Finite Differences for PDEs — Review
	Elliptic Problems
	Parabolic Problems
	Hyperbolic Problems


