PART II
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
DIRICHLET BOUNDARY CONDITIONS :
d2y
dx?
y(0) =y(2m) =0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:

Yi+1 — 2yt yi—1
2

=g for x € (0, 2m)

=giforj=1,....N
whereh:l\f—I1

» Endpoint nodes: )
Yo=0 = w—-2y;=hgy

and x; = jh

yni1 = 0= —2yy + yn_1 = h°gn

» Tridiagonal algebraic system — solved very efficiently with the
THOMAS ALGORITHM (a version of the Gaussian elimination)
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Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
NEUMANN BOUNDARY CONDITIONS :
4y
dx?
dy
0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:
Yit1 — 2y +Yyj-1
A2
» First-order Forward/Backward Difference formulae to
re—express endpoint values:
Y1i—Y
h
YN+1 — YN
h
First-order only — DEGRADED ACCURACY!
» Tridiagonal algebraic system — Is there any problem? Where?
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= 5(271') =

=giforj=1,...,N



Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

> In order to retain the SECOND-ORDER ACCURACY in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

) _ —y2t+4y1 -3y
Yo 2h

1
=0 = y= g(ﬂ’z + 4y1)

» The first row thus becomes

3

SECOND—ORDER ACCURACY RECOVERED!

2 2 )
§y2—7y1:hg1
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT STENCILS — stencils based on three grid points
(in every direction) only: {xji1, X, xj—1} at the j — th node

» Is is possible to obtain higher (then second) order of accuracy
on compact stencils? — YES!

» Consider the central difference approximation to the equation
Py _
&2 &

h? 12

Yirr =2y +yi1 W
i+ iTYi yj( )+(9(h4):gj
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

2 (iv) . . .
> Re-express the error term %yj('v)usmg the equation in question:

W Gy _ 0, W lgn—2g+g1 B
oGy _ o _m (v ) h4
127 125 T 12 2 &  TOoU)

> Inserting into the original finite-difference equation:

Yitr —2¥+yi-1 | g+l — 28+ g1
h2 =&+ 12

+ O(h%)

» Slight modification of the RHS = FOURTH-ORDER
ACCURACY!!!
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT FINITE DIFFERENCE SCHEMES —

» ADVANTAGES:

> Increased accuracy on compact stencils

» DRAWBACKS:

> need to be tailored to the specific equation solved

> can get fairly complicated for more complex equations
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» Consider the following CAUCHY PROBLEM :

dy _
dt

The independent variable t is usually referred to as TIME .

f(y,t) with y(to) = yo

» Equations with higher-order derivatives can be reduced to
systems of first-order equations

» Generalizations to systems of ODEs straightforward
» When the RHS function does not depend on y, i.e.,

solution obtained via a QUADRATURE

» Assume uniform time-steps ( h is constant )
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» ACCURACY — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the GLOBAL ERROR

(global error) = (local error) x (# of time steps),

rather than the LOCAL ERROR .

» STABILITY — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.

B. Protas MATH745, Fall 2016



Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (I)

> STABILITY of various numerical schemes is usually analyzed
by applying these schemes to the following LINEAR MODEL :

d . .
d%: =)y = ()\r + 1)\,-)y with y(to) = Yo,

which is stable when \, <=0 .

» EXACT SOLUTION:

Nh?2 o N3h3
2 6 > Yo

y(t) = yoet = <l+)\h+++...
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (II)

» MOTIVATION — consider the following
ADVECTION-DIFFUSION PDE :

ot ox Ox2
Taking Fourier transform yields (k is the wavenumber):
di

——+cikd K =0
ar + Cl KU+ ak® ug

where
» the real term a k? i represents DIFFUSION

> the imaginary term c/ k iy represents ADVECTION
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

» Consider a Taylor series expansion

y(tnt1) = y(ta) + hy/(tn) + *y”(tn) +.
Using the ODE we obtain

dy
!
= — :f
YT
dy’ df
= T
gt gttt

» Neglecting terms proportional to second and higher powers of
h yields the ExpLIiCIT EULER METHOD

Yn+1 =Yn+ hf()/na tn)

» Retaining higher—order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with

desirable stability properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

» LOCAL ERROR analysis:

Vi1 = (L4 Ah) yn +[O(h7)]

» GLOBAL ERROR analysis:

-
(global error) = Ch? - N = Ch?* - b= C'h

Thus, the scheme is
> locally second-order accurate

» globally (over the interval [to, ty + NAh]) first-order accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (I11)

» Stability (for the model problem)

Yn+1 = ¥Yn + Ahyn = (L + Ah)y,

» Thus, the solution after n time steps

Yo=1+M)"y=0"yy = oc=1+A\h

> For large n, the numerical solution remains stable iff
o] <1 = (L+A\h)?+(\h)?2<1
» CONDITIONALLY STABLE for real A

» UNSTABLE for imaginary A
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (1)

» IMPLICIT SCHEMES — based on approximation of the RHS that
involve f(y,+1,t), where y,.1 is the unknown to be determined

» [MPLICIT EULER SCHEME — obtained by neglecting second and
higher-order terms in the expansion:

h2
y(tn) = y(tntr1) — hy'(tng1) + Ey”(tm) -

» Upon substitution % = f(Yn+1, tn+1) we obtain
tn+1

Yn+1 = Yn + hf(yn+17 tn+1)

» The scheme is
> locally SECOND—ORDER accurate
» globally (over the interval [to, to + Nh]) FIRST-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (I1)

» Stability (for the model problem):

Y41 =Yn+ AYny1 = yar1 = (1—Ah)"ly,
1
1—Ah
o] <1 = (1-XM\h2+\h)?>1
» Implicit Euler scheme is thus stable for

> all stable model problems
» most unstable model problems

» REMARK: When solving systems of ODEs of the form
y = A(t)y, each implicit step requires solution of an algebraic
system: ypy1 = (I — hA) 1y,

» Implicit schemes are generally hard to implement for nonlinear
problems
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

» Obtained by approximating the formal solution of the ODE
Ynil = Yn+ ft"“ f(y,t) dt using the TRAPEZOIDAL QUADRATURE :

h
Yn+1 = Yn + 2 [f()/na tn) + f(YnJrla tn+1)]

» The scheme is
> locally THIRD-ORDER accurate

» globally (over the interval [ty, to + Nh]) SECOND—ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

» Stability (for the model problem):

Ah 1+
Yn+1 = Yn + T(YnJrl +Yn) = Yor1= 1_an | Yn

AR\ " Ah
B 1+5 A o n _1+—2
Yn+1 = h Yo=0 Yo = 0 =

-2

1=
o] <1 = R(\h) <0

» STABLE for all model ODEs with stable solutions
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (1)

» LEAPFROG as an example of a TWO-STEP METHOD :
Yn+1 = Yn—1 + 2hAyn

» CHARACTERISTIC EQUATION for the AMPLIFICATION FACTOR
(Yn = Unyo)
02 —2hXoc—1=0
where roots give the amplification factors:

2p2

M2h
o1 =M+ 14+ N2k ~ LA+ ——+... = e+ O(h?)

2h2
02:)\h—\/1+)\2h2:—(1—/\h+/\T—...):—e‘”’+(’)(h3)

» Thus, the scheme is
> locally THIRD-ORDER accurate
» globally (over the interval [to, to + Nh]) SECOND—-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (II)

» Stability for diffusion problems (A =\, ):

o1 =Ah+/1+X2h2>1 forall h>0

Thus the scheme is UNCONDITIONALLY UNSTABLE for diffusion
problems!

» Stability for advection problems ( A = i)\ ):

1
o3y =1 (M) for h< oy

Thus, the scheme is CONDITIONALLY STABLE and NON-DIFFUSIVE

for advection problems!

» QUESTION — analyze dispersive (i.e., related to arg(o)) errors of
the leapfrog scheme.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1)

» General form of a MULTISTEP (£, () PROCEDURE :

P q
Z Qjynyj =h Z Bif (Yntjs tatj)

j=0 j=0
with characteristic polynomials
é-p(z) = Oépr + ap—lzp_l + e + [o7y)

Cq(Z) — 5qzq +5q712q_1 +--+ B

» if p> g — EXPLICIT SCHEME
» if p < g — IMPLICIT SCHEME

» CONSISTENCY: h—0 = Local Error — 0
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Generalis

Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (I1)

Theorem

» Consider an initial-value problem dy = f(t,y), y(0) = yo,
where f : [0, T| x R" - R" is r t/mes continuously
differentiable w. r. t. both variables. A (&, () —procedure
converges uniformly in [0, T], i.e.,
limp—0 maxe,cpo, 11 [lyn — y(ta)|| = 0 if:

1. the following consistency conditions are verified: £(1) =0 and
¢'(1) = ¢(1) ( CONSISTENCY CONDITION )

2. all roots of the polynomial £(z) are such that |z;| <1 and the
roots with |zx| = 1 are simple ( STABILITY CONDITION )
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (lII)

Proof (part 1.)

» Taylor expansions
y p
y! (t) B r+1
y(t+jh) = §: K+ O(h )

/ ,VHI Bk ~ yW(r) e
y'(t+jh) = Z WO = kI~ =t +0o(n")
k=1 k!

» Error E(t,h) (s = max{p, q})

E(t,h) = ajy(t+jh)—h > Bif(t+jhy(t+jh)=> [ajy(t+jh)—hBy (t+]h)]

j=0 j=0 j=0
=57 Sk — ki g ¥ (t) e+ O(h1)
k=0 | j=0 '
=0 (%)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1V)

Proof (Cont.)

>

S
(%) > e —kj<NB=0, k=0,...r
j=0

» For the global error to vanish we need r = 1, so that O(h?)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)

» General form of a FRACTIONAL STEP METHOD :
Yot1 =Yn+y1hki+y2hky+y3hks+ ...
where
ki = f(yn, tn)
ka = f(yn + Bihky, tn + arh)
k3 = f(yn + B2hki + B3hko, tn + azh)

» Choose ~;, 8; and «; to match as many expansion coefficients as

possible in B2 B3
y(tns1) = y(tn) + hy'(ta) + " (tn) + ¥ (tn) ..
y'=f
y' = fo+ ffy

V" = fu + 6, 20F + 2 fy 4+ £2£,

» Runge-Kutta methods are SELF—STARTING with fairly good stability

and accuracy properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)
» RK4 — an ODE "workhorse”:

h h h
Ynt+1 = Yn + —ki + g(kz +k3) + —ka

6 6
h
ki = F(yn, tn) ke = f(yn + ki, tay1/2)
h
ks = f(yn + 5 2,t,,+1/2) ky = f(yn + hks, toy1)

» The amplification factor:
N NR XA
2 + 6 + 24

oc=1+ A+

Thus, stability iff |o| <1
» ACCURACY:
e =04+ 0O(h°)
Thus, the scheme is

» locally FIFTH-ORDER accurate
» globally (over the interval [to, to + Nh]) FOURTH-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge’s Principle

» Let (k + 1) be the order of the local truncation error; denote Y(t, h)
an approximation of the exact solution y(t) computed with the step
size h; then at t = ty + 2nh:

y(t) = Y(t,h) ~ C2nh*"" = C(t — to)h"*
y(t) = Y(t,2h) ~ Cn(2h)*"" = C(t — t)2" H*

Subtracting:
Y (t,2h) — Y(t, h) ~ C(t — to)(1 — 2¥)h*

» Thus, we can obtain an estimate of the ABSOLUTE ERROR based on
solution with two step—sizes only:

Y(t, h) — Y(t,2h

y(0) = v (e h) ~ VLD Z V820

» Runge's principle is very useful for ADAPTIVE STEP SIZE
REFINEMENT
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Lax Equivalence Theorem!

» Consider an INITIAL VALUE PROBLEM

du .
P Lu with u(to) = wo

and assume that it is well-posed, i.e., it admits solutions which are
unique and stable

» Consider a numerical method defined by a finite—difference operator
C(h) such that the approximate solution is given by

up(nh) =C(h)"wo, n=1,2,...

» The above method is CONSISTENT iff % is a convergent
approximation of the operator £

» LAX THEOREM — For a CONSISTENT difference method
STABILITY is equivalent to CONVERGENCE

For a more technical discussion, see $ 5.2 in Atkinson & Han (2001)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties (1)

» |s ACCURACY and STABILITY all that matters?

» CONSERVATION PROPERTIES — conservation by the numerical
method (i.e., in the discrete sense) of various invariants the original
equation may possess

» REMARK — conservation properties are particularly relevant for
solution of Hamiltonian / hyperbolic systems

» Example — conservation of the solution norm:
> In the continuous setting (assume u = |u|e'?)

dlu
W M _o = Ju(e) = Ju,
—— =iy =
dt de _
dt - 1y
» In the discrete setting: |up(nh)| = |up((n —1)h)| = -+ = |ux(0)]

Necessary and sufficient condition for discrete conservation: 3h, |o(h)] =1

B. Protas MATH745, Fall 2016



Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties (II)

> Implicit Euler —

Il = v

Cli—ixnhl T TN
The scheme is thus DISSIPATIVE (i.e., not conservative)

» Fourth—Order Runge—-Kutta —

|o| 1—%/\?h2+~-~<1forallh

X2 3R et 1
=14+ iNh— i 0 4 2 — /576 — 8ASHS + \BhB
ted i > i~ o4 24\/5 6 — 8! ;
=1- —1i4A6h6 - <1 forsmall h

The scheme is thus DISSIPATIVE (i.e., not conservative)

> Leapfrog — lo1p] =1 forall h< |
The scheme is thus CONSERVATIVE for all tlme—steps for which it is
stable!!! Leapfrog is an example of a SYMPLECTIC INTEGRATOR

) ]
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» Classification of linear PDEs in 2D: consider v : Q2 — R and
A, B, C € R such that
d%u 9%u 0%u
» ELLIPTIC PROBLEMS : B2 —4AC <0
» Poisson equation: Ry u
2 + 87)/2 =g(x,y)
» PARABOLIC PROBLEMS : B2 —4AC =0
» Heat equation: @ - @ N @ + etey)
ot 2\ ox2 Oy? gy
» HYPERBOLIC PROBLEMS : B2 —4AC >0

» Wave equation: @_a @+@ + ety
oz~ T\ ax2 T gy2) TEVY
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» POISSON EQUATION

Pu , Fu

_ﬁ—i_aﬁ:g(x’y) inQ, QcR?

» Assuming Ax = Ay = h, the DISCRETE LAPLACIAN

Ay~ YLt Uije — 4/171£J +uj—1j + Uij-1 +O(K)
where uj; = u(iAx,jAy), i,j=1,....,N
» Thus
Uit + Uit — Auij + ui—1j + uijo1 = b gij, Lhj=1...,N

» After incorporating boundary conditions (Dirichlet, Neumann) and
vectorizing the variables ( &j;(y_1); = &ij ), we obtain a sparse
algebraic problems with a diagonally-dominant PENTADIAGONAL
MATRIX = straightforward to solve
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Elliptic Problems

Parabolic Problems
Finite Differences for PDEs — Review Hyperbolic Problems

» HEAT EQUATION

ou  0%u

EZW in [O, T]X[a,b]

» CRANK-NICOLSON METHOD (xj=jAx,j=1,...,M, t = nAt,
n=1,...,N):

. — 2,\" 2
» spatial derivative: (%)_ = “(%P + 0O((Ax)?)
j
> time derivative:

du\"t _ut - 1[92\ | (&u
(at>j =" ar To@n=; (ax) +<ax >
n+l n At (n+1

u; uily —2u

i T T (X

+0((A1))

n+1 n+1

+uly Fuly - 20 + qu’_1> + 0O ((Ax)zAt + (At)z)

» thus, defining r = (AA—;)Z ,we have at every time step n
—rujnjl1 +2(1 + r)u] nl ruj’”l1 =rul +2(1—r)uf +ruf

which for U™ = [uf, ..., u},]" can be wrltten as an algebralc system
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» ¢ METHOD
» allow for a more general approximation in time of the RHS (6 € [0, 1])

ou\" UFH—UJ{' 2u\"! u\"
<8t>j =" Ar +O(At) = 0<8x2>j +(1-190) <8x2>J +O(At)

> special cases
» =0 = ExpLICIT METHOD: U™ = AgU"
» =1 = CRANK NICOLSON METHOD (see previous slide)
» =1 — IMPLICIT METHOD: A U™! ="

» Stability:

» The EXPLICIT SCHEME is STABLE for r = (AA—Xf)z < %
» The CRANK—NICOLSON and IMPLICIT SCHEME are STABLE for all r
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» WAVE EQUATION ) )
0“u  0O°u

ﬁ:ﬁ n [0, T]X[a,b]

n _ n n
ully 2uj—l—uj71

» Spatial derivative: (%)n =yt O((Ax)?)
j

» Time derivative:

2 n {7+1 —oyn + {1—1 2 n
(B Ry (2
J J

T @) a2

2
BT (axp (0 + 0 y) —uf ™" 42 (1 - ((2?)2> 4+ O (A (Aef + (48

(At)?

» Stability for (Bx)?

<1

» REMARK: need two initial conditions!
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