PART III REVIEW OF (ABSTRACT) APPROXIMATION THEORY

Although this may seem a paradox, all exact science is dominated by the idea of approximation.

— Bertrand Russell (1872–1970)

Agenda

Basic Concepts

Inner Products, Unitary and Hilbert Spaces Orthogonality

Approximation in Hilbert Spaces

Fourier Series
Best Approximations
Pates of Convergence

Rates of Convergence

- ▶ Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x, x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ► Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- ▶ A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x, x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ► Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ► Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ► Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- ▶ A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ▶ Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x,y) = \overline{(y,x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- ▶ A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- ► A complete unitary space *H* is called a HILBERT SPACE

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ► The following properties hold:
 - \triangleright x | 0 for all x \in V
 - \triangleright v | v only if v = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - ▶ if $x \perp y_n \ (n = 1, 2, ...)$ and $y_n \rightarrow y$, then $x \perp y$
 - \blacktriangleright if \mathcal{A} is dense in V and $\times \perp \mathcal{A}$, then $\times = \emptyset$
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - $\triangleright x \perp 0$ for all $x \in V$
 - \triangleright $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - $x \perp 0$ for all $x \in V$
 - $\triangleright x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - ▶ $x \perp 0$ for all $x \in V$
 - \triangleright $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - ▶ $x \perp 0$ for all $x \in V$
 - $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - ightharpoonup if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - ▶ $x \perp 0$ for all $x \in V$
 - $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - ightharpoonup if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - ▶ $x \perp 0$ for all $x \in V$
 - $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

- ► Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x, y) = 0. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- ▶ The following properties hold:
 - $x \perp 0$ for all $x \in V$
 - $x \perp x$ only if x = 0
 - ▶ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then x is also orthogonal to the linear hull $\mathcal{L}(A)$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if \mathcal{A} is dense in V and $x \perp \mathcal{A}$, then x = 0
- ▶ SCHMIDT ORTHOGONALIZATION Let \mathcal{A} be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space H. Then there is an orthonormal system $\mathcal{F} = \{e_i \in V : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathcal{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathcal{F}_k = \{e_i : j = 1, \ldots, k\}$ are the same for all k.

Let $\{e_1, e_2, \dots\}$ be an orthonormal system in a Hilbert space H and let H_k be the linear hull of $\{e_1, \dots, e_k\}$. Then for every $x \in H$ the element $a = \sum_{j=1}^k (x, e_j) e_j \in H_k$ has the property that $\|x - a\| \le \|x - y\|$ for all $y \in H_k$. The numbers (x, e_j) are called THE FOURIER COEFFICIENTS relative to the orthonormal system $\{e_1, e_2, \dots\}$. Furthermore, from $\|x - a\|^2 \ge 0$ follows the BESSEL INEQUALITY:

$$\sum_{j=1}^{k} |(x, e_j)|^2 \le (x, x)$$

▶ If A is a given subspace in a Hilbert space H, then

$$\mathcal{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathcal{A}\}$$

is a closed linear subspace of H. It is, therefore, itself a Hilbert space and is called THE ORTHOGONAL COMPLEMENT OF $\mathcal A$

Let $\{e_1, e_2, \dots\}$ be an orthonormal system in a Hilbert space H and let H_k be the linear hull of $\{e_1, \dots, e_k\}$. Then for every $x \in H$ the element $a = \sum_{j=1}^k (x, e_j) e_j \in H_k$ has the property that $\|x - a\| \le \|x - y\|$ for all $y \in H_k$. The numbers (x, e_j) are called THE FOURIER COEFFICIENTS relative to the orthonormal system $\{e_1, e_2, \dots\}$. Furthermore, from $\|x - a\|^2 \ge 0$ follows the BESSEL INEQUALITY:

$$\sum_{i=1}^{k} |(x, e_j)|^2 \le (x, x)$$

▶ If A is a given subspace in a Hilbert space H, then

$$\mathcal{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathcal{A}\}$$

is a closed linear subspace of H. It is, therefore, itself a Hilbert space and is called THE ORTHOGONAL COMPLEMENT OF $\mathcal A$

If H₁ is a closed linear subspace of a Hilbert space H and H₂ is its orthogonal complement, then every x ∈ H can be uniquely represented in the form

$$x = x_1 + x_2, (x_1 \in H_1, x_2 \in H_2)$$

We write $H = H_1 \oplus H_2$ and call H an orthogonal sum of H_1 and H_2 .

► Since

$$||x - x_1|| = \rho(x, H_1) = \inf_{y_1 \in H_1} \{||x - y_1||\},$$

$$||x - x_2|| = \rho(x, H_2) = \inf_{y_2 \in H_2} \{||x - y_2||\},$$

one calls x_1 and x_2 the ORTHOGONAL PROJECTIONS of x on H_1 and H_2 , respectively.

If H₁ is a closed linear subspace of a Hilbert space H and H₂ is its orthogonal complement, then every x ∈ H can be uniquely represented in the form

$$x = x_1 + x_2, (x_1 \in H_1, x_2 \in H_2)$$

We write $H = H_1 \oplus H_2$ and call H an orthogonal sum of H_1 and H_2 .

Since

$$||x - x_1|| = \rho(x, H_1) = \inf_{y_1 \in H_1} \{||x - y_1||\},$$

$$||x - x_2|| = \rho(x, H_2) = \inf_{y_2 \in H_2} \{||x - y_2||\},$$

one calls x_1 and x_2 the ORTHOGONAL PROJECTIONS of x on H_1 and H_2 , respectively.

- Let $\{e_1, e_2, \dots\}$ be a countable orthonormal system in a Hilbert space H. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) \, e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) \, e_j$ defines an element of H for every $x \in H$. This is called THE FOURIER SERIES OF x
- ▶ The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $H_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \dots, e_k, \dots\}$ is complete in H, i.e., $\overline{\mathcal{L}(\{e_1, \dots, e_k, \dots\})} = H$, then the Fourier series for any $x \in H$ converges to x

- Let $\{e_1, e_2, \dots\}$ be a countable orthonormal system in a Hilbert space H. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) \, e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) \, e_j$ defines an element of H for every $x \in H$. This is called THE FOURIER SERIES OF x
- ▶ The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $H_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in H, i.e., $\overline{\mathcal{L}(\{e_1, \ldots, e_k, \ldots\})} = H$, then the Fourier series for any $x \in H$ converges to x

- Let $\{e_1, e_2, \dots\}$ be a countable orthonormal system in a Hilbert space H. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) e_j$ defines an element of H for every $x \in H$. This is called THE FOURIER SERIES OF x
- ▶ The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $H_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- ▶ If the system $\{e_1, \dots, e_k, \dots\}$ is complete in H, i.e., $\overline{\mathcal{L}(\{e_1, \dots, e_k, \dots\})} = H$, then the Fourier series for any $x \in H$ converges to x

► An orthonormal system is said to be CLOSED if THE PARCEVAL EQUATION

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in H$. An orthonormal system is closed IFF it is complete.

► An orthonormal system in a separable Hilbert space is at most countable

► An orthonormal system is said to be CLOSED if THE PARCEVAL EQUATION

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in H$. An orthonormal system is closed IFF it is complete.

► An orthonormal system in a separable Hilbert space is at most countable

$$D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|$$

- ► Issues:
 - ▶ Does the best approximation ĝ exist?
 - ► Can ĝ be uniquely determined?
 - ▶ How can \hat{g} be computed?

$$D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|$$

- ► Issues:
 - ▶ Does the best approximation \hat{g} exist?
 - ightharpoonup Can \hat{g} be uniquely determined?
 - ▶ How can \hat{g} be computed?

$$D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|$$

- ► Issues:
 - ▶ Does the best approximation \hat{g} exist?
 - ightharpoonup Can \hat{g} be uniquely determined?
 - ▶ How can \hat{g} be computed?

$$D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|$$

- ► Issues:
 - ▶ Does the best approximation \hat{g} exist?
 - ▶ Can \hat{g} be uniquely determined?
 - ▶ How can \hat{g} be computed?

$$D(f, \mathcal{G}_n, \|\cdot\|) \triangleq \inf_{g \in \mathcal{G}_n} \{\|f - g\|\} = \|f - \hat{g}\|$$

- Issues:
 - ▶ Does the best approximation \hat{g} exist?
 - ▶ Can \hat{g} be uniquely determined?
 - ▶ How can \hat{g} be computed?

▶ The approximation problem in a Hilbert space H has a unique solution \hat{g} for which $(\hat{g} - f, h) = 0$ holds for all $h \in \mathcal{G}_n$. If $\{e_1, \ldots, e_n\}$ is a basis of \mathcal{G}_n , then

$$\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j$$

with

$$\sum_{j=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$
 (**)

and the approximation error is

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 + ||\hat{g}||^2 - 2\sum_{i=1}^n c_i^{(n)}(e_i, f)$$

- ▶ Thus, the Fourier coefficients $c_j^{(n)}$, $j=1,\ldots,n$, can be calculated by solving an algebraic system (★) with the Hermitian, positive—definite matrix $A_{jk}=(e_j,e_k)$ (the so called GRAM MATRIX).
- If the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$

▶ The approximation problem in a Hilbert space H has a unique solution \hat{g} for which $(\hat{g} - f, h) = 0$ holds for all $h \in \mathcal{G}_n$. If $\{e_1, \ldots, e_n\}$ is a basis of \mathcal{G}_n , then

$$\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j$$

with

$$\sum_{j=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$
 (**)

and the approximation error is

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 + ||\hat{g}||^2 - 2\sum_{i=1}^n c_i^{(n)}(e_i, f)$$

- ▶ Thus, the Fourier coefficients $c_j^{(n)}$, $j=1,\ldots,n$, can be calculated by solving an algebraic system (★) with the Hermitian, positive–definite matrix $A_{jk}=(e_j,e_k)$ (the so called GRAM MATRIX).
- ▶ If the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$

▶ The approximation problem in a Hilbert space H has a unique solution \hat{g} for which $(\hat{g} - f, h) = 0$ holds for all $h \in \mathcal{G}_n$. If $\{e_1, \ldots, e_n\}$ is a basis of \mathcal{G}_n , then

$$\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j$$

with

$$\sum_{j=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$
 (**)

and the approximation error is

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 + ||\hat{g}||^2 - 2\sum_{i=1}^n c_i^{(n)}(e_i, f)$$

- ▶ Thus, the Fourier coefficients $c_j^{(n)}$, $j=1,\ldots,n$, can be calculated by solving an algebraic system (★) with the Hermitian, positive–definite matrix $A_{jk}=(e_j,e_k)$ (the so called GRAM MATRIX).
- If the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ► The RATE OF CONVERGENCE of this approximation is:
 - ightharpoonup ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty,$$
 or, equivalently, $|c_j|\sim\mathcal{O}(j^{-k})$

- ▶ EXPONENTIAL OR SPECTRAL with index r if for any k > 0
 - $\lim_{j o\infty}|c_j|j^k<\infty, \quad ext{or, equivalently, } |c_j|\sim \mathcal{O}(\exp(-qj')), \ \ r,q\in\mathbb{R}^{+}$
 - spectral convergence can be:

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ► The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o \infty} |c_j| j^k < \infty, \quad ext{or, equivalently, } |c_j| \sim \mathcal{O}(j^{-k})$$

▶ EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

$$\lim_{j \to \infty} |c_j| j^k < \infty,$$
 or, equivalently, $|c_j| \sim \mathcal{O}(\exp(-qj^r)),$ $r, q \in \mathbb{R}^+$

- ▶ SUBGEOMETRIC when r < 1,
- ightharpoonup GEOMETRIC when r=1, and
- SUPERGEOMETRIC otherw

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ► The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty, \quad ext{or, equivalently, } |c_j|\sim \mathcal{O}(j^{-k})$$

▶ EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

$$\lim_{j\to\infty}|c_j|j^k<\infty,\quad ext{or, equivalently, }|c_j|\sim\mathcal{O}(\exp(-qj^r)),\quad r,q\in\mathbb{R}^+$$

- ▶ SUBGEOMETRIC when r < 1,
- $lap{F}$ GEOMETRIC when r=1, and
- SUPERGEOMETRIC otherwis

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ► The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty, \quad ext{or, equivalently, } |c_j|\sim \mathcal{O}(j^{-k})$$

EXPONENTIAL OR SPECTRAL with index r if for any k > 0

$$\lim_{j o\infty}|c_j|j^k<\infty, \quad ext{or, equivalently, } |c_j|\sim \mathcal{O}(\exp(-qj^r)), \ \ r,q\in\mathbb{R}^+$$

- ▶ SUBGEOMETRIC when r < 1
- ▶ GEOMETRIC when r = 1, and
 - SUPERGEOMETRIC otherwise

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ► The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty,$$
 or, equivalently, $|c_j|\sim\mathcal{O}(j^{-k})$

EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

$$\lim_{j o\infty}|c_j|j^k<\infty, \quad ext{or, equivalently, } |c_j|\sim \mathcal{O}(\exp(-qj^r)), \ \ r,q\in\mathbb{R}^+$$

- ▶ SUBGEOMETRIC when r < 1,
- ▶ GEOMETRIC when r = 1, and
 - SUPERGEOMETRIC otherwis

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ▶ The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty,$$
 or, equivalently, $|c_j|\sim\mathcal{O}(j^{-k})$

EXPONENTIAL OR SPECTRAL with index r if for any k > 0

$$\lim_{j \to \infty} |c_j| j^k < \infty, \quad ext{or, equivalently, } |c_j| \sim \mathcal{O}(\exp(-qj^r)), \quad r,q \in \mathbb{R}^+$$

- ▶ SUBGEOMETRIC when r < 1,
- GEOMETRIC when r=1, and
 - SUPERCEOMETRIC other

- Assume that c_j , $j=1,2,\ldots$ are the Fourier coefficients related to an approximation of some function $f=\sum_{j=1}^n c_j e_j$
- ▶ The RATE OF CONVERGENCE of this approximation is:
 - ▶ ALGEBRAIC with order k if for j >> 1

$$\lim_{j o\infty}|c_j|j^k<\infty,$$
 or, equivalently, $|c_j|\sim\mathcal{O}(j^{-k})$

EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

$$\lim_{j o \infty} |c_j| j^k < \infty, \quad ext{or, equivalently, } |c_j| \sim \mathcal{O}(\exp(-qj^r)), \quad r,q \in \mathbb{R}^+$$

- ▶ SUBGEOMETRIC when r < 1,
- ▶ GEOMETRIC when r = 1, and
- SUPERGEOMETRIC otherwise