PART V

Wavelets & Multiresolution Analysis

WAVELETS — OVERVIEW (1)

e What is wrong with Fourier analysis ???

— All spatial information is hidden in the phases of the expansion
coefficients and therefore not readily available

Localized functions (“bumps”) tend to have a very complex
representation in Fourier space

Local modification of the function affects its whole Fourier transform

If the dominant frequency changes in space, only average frequencies are
encoded in Fourier coefficients

e Remedy — need an analysis tool that will encode both space (time) and

frequency information at the same time

e Following the convention, will work with time (t) and frequency (w)

WAVELETS — OVERVIEW (I1)

e From Discrete Fourier Transform to Integral Fourier Transform —
Consider the space Lo(IR) of square—integrable functions defined on R; if
f € Ly(R) satisfies suitable decay conditions at +co (which??), the Discrete
Fourier Transform can be replaced with the Integral Fourier Transform

f(w) = /:J F(x)e i i
f(t) = /:: f () do

o Interestingly, the Fourier Transforms (both discrete and integral) are
constructed as “superpositions” of dilations of the function w(x) = e’

(Wi (t) = w(kt))
e Want to construct an integral transform using a basis function s which is
very localized (a “wavelet”); we will therefore need:
— dilations

— translations

WAVELETS — GABOR TRANSFORM (1)

The history begins with a windowed Fourier transform known as the Gabor
Transform (1946)

(68N@ = [ (fe'™)gt-b,

2
where the window function is given by gq(t) e 4 witha >0

_ 1
N
Note that the Fourier transform if a Gausi;an function is another Gaussian
function, i.e., [, e 1¥%e® dx = \/Ee*E

Note also that the window function has the following normalization
S Ga(t—b)db= /%, gu(x)dx =1

Therefore, for the Gabor transform we obtain
/ ()@ db=f(w), weR

Thus, the set {G{ f: be R} of Gabor transforms of f decomposes the
Fourier transforms f of f exactly to give its local spectral information




WAVELETS — GABOR TRANSFORM (I1)

e The width of the window function can be characterized by employing the
notion of the standard deviation

1 ® 22 12
Aaé—{/ X xdx}
% = gallz 1o %

e Notethatfora >0 Ag, =\/a
Proof:
— ||gu || = (8m@)~Y/* can be evaluated setting w= 0 and a= (2a)~t in the
expression for the Fourier transform of a Gaussian function

— [™, %203 () dx can be evaluated twice differentiating the Fourier transform of a
Gaussian function and again setting w=0and a= (20) %

o Instead of localizing the Fourier transform of f, the Gabor transform may
equivalently be regarded as windowing f with the window function G |

(681 = (1,680 = [ fOGEDct

WAVELETS — GABOR TRANSFORM (1)

e Using the Parseval identity and noting that
G = & MO a0
we obtain for the Gabor transform

(681)(®) = (1,680 = 5=(7, 680
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e The third line (in red ) indicates that up to a multiplicative factor \/ge*ib‘*’
— the windowed Fourier transform of f with gy att = b,
— the window inverse Fourier transform of f with O1/4q AN =W
are equal!

WAVELETS — UNCERTAINTY PRINCIPLE (1)

Consider more general window functions w € Lo(R) which satisfy the
requirement

tw(t) € Lo(R)

It can be shown that

- [t|2w(t) € La(R)

- wel1(R)

— the Fourier transform W is continuous

- WeLy(R)
Note, however, that in general xW(x) ¢ Lo(R), therefore w may not in general
be a frequency window function

If we Lp(R) is chosen so that both w and W satisfy the above condition, then
the window Fourier transform

(GoN(@ = [ (Fe ") wi—bydt = (T.Wh),

where W, , = 9w(t —b), is called a short-time Fourier transform

WAVELETS — UNCERTAINTY PRINCIPLE (I1)

o \We can define the center x* and radius Ay, of was

a1 / tw(t) [2dt, Awe 1 {/ (t—x )|W(t)|2dt}1/2

wil3 [Iwll2
Then, (G f)(w) gives local information on f in the time—window
X" +b— A, X" + b+ Ay

We can determine the center w* and the radius A ,0f the (frequency)
window function W using formulae similar to the above

Defining Vb () £ £Wh oo(N) = 26" 1P1i(n — w), which is also a
window function with the center w* + wand radius A4y we can write (using

the Parseval identity) -~ N
(Gpf)(w) = (fWh0) = (f,Vbw)

Thus, (ébf)(m) also gives local spectral information about t in the frequency
window

[+ W— AW +w+ Ay




WAVELETS — UNCERTAINTY PRINCIPLE (II1)
e Therefore by choosing w € L(R) such that both xw(x) € L»(R) and

xW(x) € Lo(R) to define a windowed Fourier transform (G f)(w) we obtain
localization in a time—frequency window

[X* +b— Ay, X" + b+ Ayl X [0 + 00— Ay +w+ A%
with area equal to 4AwA

In fact, there is a relation between possible time and frequency windows
which is made precise in the following theorem
Heisenberg Uncertainty Principle — Letw € L(R) be chosen so that
XwW(X) € La(IR) and xW(x) € Lo(R). Then
1
A y> =
wWe w— 2
Furthermore, equality is attained if and only iff
w(t) = cé%gq (t — b),

wherec#0,a >0,and a,be R.

WAVELETS — UNCERTAINTY PRINCIPLE (1V)
e Proof of the Heisenberg Uncertainty Principle
— Let us assume that the centers x* and w* are zero (if they are not, then we
can modify was W(t) = e 'Ot f (t + x*))
— We observe that
T B w(t) P dt %, 00| W(w)f dw
EHKY:
_ 5B w() Pt [, W (t)[Pdt
w3

DZNZ,~

— Using the Schwarz inequality we get

- 2
DA > m { /_ ) |tW(t)V\/(t)\dt}
1 [/t
> o |

> leng [[:tuw(tnzrdtr

2
3 [W(tW (t) +W ()w(t)] dt}

WAVELETS — UNCERTAINTY PRINCIPLE (V)

e Proof of the Heisenberg Uncertainty Principle — continued
— Integrating by parts and noting that lim; o Vif(t) =0 (since
[t|%2w(t) € Lo(R) seen earlier) we obtain

np2 > L UZ \w(t)\zdtr: %

s

— An equality will be obtained when the Schwarz inequality becomes an
equality; this implies that there exists b € C such that

W (t) = —2btw(t)
so that there exists an a € C such that w(t) = ae b
e Thus the Gabor transform has the smallest possible time—frequency window.

e The above Heisenberg Uncertainty Principle has far-reaching consequences.

INTEGRAL WAVELET TRANSFORM (1)

e The short-time Fourier transform has a rigid time—frequency window, in the
sense that its width (Ay) is unchanged for all frequencies analyzed; this turns
out to be a limitation when studying functions with varying frequency
content

e The Integral Wavelet Transform provides a window which:

— automatically narrows when focusing on high frequencies,
— automatically widens when focusing on low frequencies
o If P € Lo(R) satisfies the “admissibility” condition
2 \fvﬁﬂz do< o,
then Y is called a basic wavelet . Relative to every basic wavelet Y. the
integral wavelet transform (IWT) in Lp(RR) is defined by

(\wa)(a.,b)é\aﬁ/_if(x)w(%)) dx, feLla(R), a£0,beR,




INTEGRAL WAVELET TRANSFORM (I1)

Hereafter we will assume that ty(t) € Lo(R) and w{(w) € Lo(R), so that the
basic wavelet  provides a time-frequency window with finite area

From the above assumption it also follows that ( is a continuous function
and therefore finiteness of Cy implies
Mm:O::/wMUm:O

Setting
t—b
walt) 2 ol 30 (150
the IWT can be written as (Wy f)(b,a) = (f,Ypa)

If the wavelet  has the center and radius given by t* and Ay, respectively,
then the function Y4 has its center at b+ at™ and radius equal to aAy

Thus, the IWT provides local information about the function f in a time
window
[b+at™ —aly,b+at* +aly]

which narrows down as a — 0.

INTEGRAL WAVELET TRANSFORM (111)

Consider the Fourier transform of a basic wavelet

2m

Suppose that ( has the center w* and radius Ag. Defining
N(w) £ {(w+w*) we obtain w window function with center at the origin
and unchanged radius

Applying the Parseval identity to the definition of the IWT we obtain

aja

wyHab) = 222 [ flo)dnae-odo

which, modulo multiplication by a constant factor and a linear frequency
shift, localized information about the function f to the frequency window

INTEGRAL WAVELET TRANSFORM (1V)
Note that the ratio of the center frequency w*/ato the bandwidth 2Ag/a

center frequency '
bandwidth 20y

is independent of the scaling a; thus, the bandwidth grows with frequency in
an adaptive fashion ( constant-Q filtering )

Reconstruction of a function from its IWT
Let Y be a basic wavelet, then Vf,g € L2(R)

/0°° {/m (Wwf)(b,a)de} 2—2 = %CLIJ(f-,g)

—00

Furthermore, for any f € Lo(IR) and x € R at which f is continuous

100= 2 [[7[ /7 om0 6]

—00

Proof — using the Parseval identity, integrating with respect to da/a? and
using the definition of Cy,
Note the role of the admissibility condition for @

DISCRETE WAVELET TRANSFORM (1)

Consider the IWT at a discrete set of samples a=2"J and b=k2~J for
some j,ke Z

W) (55 ) = [ 1002 k= (1.1

where
Wik 2 21/2y(2)x—k)

must be chosen so that ) form a Riesz basis in L2(RR) (i.e, the linear span
of j , with j,k € Z is dense in Lo(R))
If Yj  with j,k € Z is a Riesz basis, the the relation

Wik ™) = 8j18m, J.klmeZ
uniquely defines another Riesz basis "™ known as the dual basis
Thus, every function f € L»(RR) has a unique representation

0

S (fwowkx)

="




DISCRETE WAVELET TRANSFORM (1)

For the above representation to qualify as a wavelet series , the the dual basis
W) K must be obtained from some basic wavelet § by ¢/-<(x) = @ k(x)
where

Djx 2 21/2p(2)x—k)

In general, {0 does not necessarily exist

If Y is chosen so that { does exist, the pair (Y, ) can be used
interchangeably

0 ©

f(x) = z (W) k(X) z (F, 0 Wi k(X

= =
Y and @ are called wavelet and dual wavelet , respectively

If the basis g x is orthogonal, i.e., §j x = W)k for j,k € Z, we obtain an
orthogonal wavelet transform

©

=3 (Lew

jk=—0

DISCRETE WAVELET TRANSFORM (I11)

o Consider a wavelet g and the Riesz basis j it generates; for each j € Z, let
W; denote the closure of the linear span of {Y; \ : ke Z}, i.e,

W; 2 clos,, ) {Wjk : ke Z}
Evidently, Lo(RR) can be decomposed as a direct sum of the spaces W (dots

over pluses indicate “direct sums™)

ZVV] oW FWo WA -
JEZ
and therefore every function f € Lp(IR) has a unique decomposition
f(¥) =" +0100 +9o(X) +01(x) +
where gj € Wj, Vj € Z

if P isan orthogonal wavelet, then the subspaces W; € L»(R) are mutually
orthogonal W; LW, j # | which means that

(9j,9)=0, j#I

where gj € Wj and g, € W

DISCRETE WAVELET TRANSFORM (1V)

e Therefore, in such case, the direct sum becomes an orthogonal sum

=PW L oW eWeW ...
jez
e Thus, an orthogonal wavelet ) generates an orthogonal decomposition of
the space L»(R), as the functions gj are both unique and mutually
orthogonal

MULTIRESOLUTION ANALYSIS (1)
For every wavelet s (not necessarily orthogonal) we can consider the
following space Vj € Lo(R), Vj € Z
VJ = "+\NjfZ+\Njfl

The subspaces V; have the following very interesting properties:
~CV_1CVoCVIC...

. clost, (UjezVj) = L2(R)

- NjezVj ={0}

. f(X)eV) & f(2x) Vi1, | €Z

e Note that

— In contrast to the subspaces W; which satisfy W; "W = {0}, j #1, the
sequence of subspaces V;j is nested (1°)

— Every f € Lp(R) can be approximated arbitrarily accurately by its
projections Pj f on Vj (2°)




MULTIRESOLUTION ANALYSIS (1)

o If the reference subspace Vj is generated by a single scaling function
@€ La(R) in the sense that

Vo = clos,, ) {@ok : ke Z}
where
@ik 2 229(2)x k),
then all the subspaces V; are also generated by the same @as
Vj= cloa_z(R){(pj_,k tkeZz}
in the same way as the subspaces W; are generated by the wavelet ()

e Inthe multiresolution analysis at a given scale (j +1)
- the subspace Vj represents the “large scale” features of the function

— the subspaces W; represents the “small scale” features (details) of the
function

THE END




