PART V

Wavelets & Multiresolution Analysis

Wavelets — Overview (I)

- What is wrong with Fourier analysis???
 - All spatial information is hidden in the phases of the expansion coefficients and therefore not readily available
 - Localized functions ("bumps") tend to have a very complex representation in Fourier space
 - Local modification of the function affects its whole Fourier transform
 - If the dominant frequency changes in space, only average frequencies are encoded in Fourier coefficients
- Remedy need an analysis tool that will encode both space (time) and frequency information at the same time
- Following the convention, will work with time (t) and frequency (ω)

WAVELETS — OVERVIEW (II)

• From Discrete Fourier Transform to Integral Fourier Transform — Consider the space $L_2(\mathbb{R})$ of square—integrable functions defined on \mathbb{R} ; if $f \in L_2(\mathbb{R})$ satisfies suitable decay conditions at $\pm \infty$ (which??), the Discrete Fourier Transform can be replaced with the Integral Fourier Transform

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega t} dt$$

$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega$$

- Interestingly, the Fourier Transforms (both discrete and integral) are constructed as "superpositions" of dilations of the function $w(x) = e^{ix}$ $(w_k(t) = w(kt))$
- Want to construct an integral transform using a basis function ψ which is very localized (a "wavelet"); we will therefore need:
 - dilations
 - translations

Wavelets — Gabor Transform (I)

• The history begins with a windowed Fourier transform known as the Gabor Transform (1946)

$$(\mathcal{G}_b^{\alpha} f)(\omega) = \int_{-\infty}^{\infty} \left(f(t) e^{-i\omega t} \right) g_{\alpha}(t - b) dt,$$

where the window function is given by $g_{\alpha}(t) = \frac{1}{2\sqrt{\pi\alpha}}e^{-\frac{t^2}{4\alpha}}$ with $\alpha > 0$

- Note that the Fourier transform if a Gaussian function is another Gaussian function, i.e., $\int_{-\infty}^{\infty} e^{-i\omega x} e^{ax^2} dx = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$
- Note also that the window function has the following normalization $\int_{-\infty}^{\infty} g_{\alpha}(t-b) \, db = \int_{-\infty}^{\infty} g_{\alpha}(x) \, dx = 1$
- Therefore, for the Gabor transform we obtain

$$\int_{-\infty}^{\infty} (\mathcal{G}_b^{\alpha} f)(\omega) db = \hat{f}(\omega), \ \omega \in \mathbb{R}$$

• Thus, the set $\{\mathcal{G}_b^{\alpha} f : b \in \mathbb{R}\}$ of Gabor transforms of f decomposes the Fourier transforms \hat{f} of f exactly to give its local spectral information

WAVELETS — GABOR TRANSFORM (II)

• The width of the window function can be characterized by employing the notion of the standard deviation

$$\Delta_{g_{\alpha}} \triangleq \frac{1}{\|g_{\alpha}\|_{2}} \left\{ \int_{-\infty}^{\infty} x^{2} g_{\alpha}^{2}(x) dx \right\}^{1/2}$$

- Note that for $\alpha > 0$ $\Delta_{g_{\alpha}} = \sqrt{\alpha}$ Proof:
 - $||g_{\alpha}|| = (8\pi\alpha)^{-1/4}$ can be evaluated setting $\omega = 0$ and $a = (2\alpha)^{-1}$ in the expression for the Fourier transform of a Gaussian function
 - $\int_{-\infty}^{\infty} x^2 g_{\alpha}^2(x) dx$ can be evaluated twice differentiating the Fourier transform of a Gaussian function and again setting $\omega = 0$ and $a = (2\alpha)^{-1}$
- Instead of localizing the Fourier transform of f, the Gabor transform may equivalently be regarded as windowing f with the window function $\mathcal{G}_{b,0}^{\alpha}$

$$(\mathcal{G}_b^{\alpha} f)(\omega) = (f, \mathcal{G}_{b,\omega}^{\alpha}) = \int_{-\infty}^{\infty} f(t) \overline{\mathcal{G}_{b,\omega}^{\alpha}(t)} dt$$

Wavelets — Gabor Transform (III)

• Using the Parseval identity and noting that

$$\hat{\mathcal{G}}_{b,\omega}^{\alpha}(\eta) = e^{-ib(\eta-\omega)}e^{-\alpha(\eta-\omega)^2}$$

we obtain for the Gabor transform

$$\begin{split} (\mathcal{G}_{b}^{\alpha}f)(\omega) &= (f,\mathcal{G}_{b,\omega}^{\alpha}) = \frac{1}{2\pi}(\hat{f},\hat{\mathcal{G}}_{b,\omega}^{\alpha}) \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\eta) e^{ib(\eta-\omega)} e^{-\alpha(\eta-\omega)^{2}} d\eta \\ &= \frac{e^{-ib\omega}}{2\sqrt{\pi\alpha}} \int_{-\infty}^{\infty} \left(e^{ib\eta} \hat{f}(\eta) \right) g_{1/4\alpha}(\eta-\omega) d\eta \\ &= \frac{e^{-ib\omega}}{2\sqrt{\pi\alpha}} (\mathcal{G}_{\omega}^{1/4\alpha} \hat{f})(-b) \end{split}$$

- The third line (in red) indicates that up to a multiplicative factor $\sqrt{\frac{\pi}{\alpha}}e^{-ib\omega}$
 - the windowed Fourier transform of f with g_{α} at t = b,
 - the window inverse Fourier transform of \hat{f} with $g_{1/4\alpha}$ at $\eta = \omega$ are equal!

WAVELETS — UNCERTAINTY PRINCIPLE (I)

• Consider more general window functions $w \in L_2(\mathbb{R})$ which satisfy the requirement

$$tw(t) \in L_2(\mathbb{R})$$

It can be shown that

- $|t|^{1/2}w(t) \in L_2(\mathbb{R})$
- $w \in L_1(\mathbb{R})$
- the Fourier transform \hat{w} is continuous
- $-\hat{w} \in L_2(\mathbb{R})$

Note, however, that in general $x\hat{w}(x) \notin L_2(\mathbb{R})$, therefore w may not in general be a frequency window function

• If $w \in L_2(\mathbb{R})$ is chosen so that both w and \hat{w} satisfy the above condition, then the window Fourier transform

$$(\tilde{\mathcal{G}}_b f)(\omega) = \int_{-\infty}^{\infty} \left(f(t) e^{-i\omega t} \right) \overline{w(t-b)} dt = (f, W_{b,\omega}),$$

where $W_{b,\omega} = e^{i\omega t}w(t-b)$, is called a short-time Fourier transform

WAVELETS — UNCERTAINTY PRINCIPLE (II)

• We can define the center x^* and radius Δ_w of w as

$$x^* \triangleq \frac{1}{\|w\|_2^2} \int_{-\infty}^{\infty} t |w(t)|^2 dt, \qquad \Delta_w \triangleq \frac{1}{\|w\|_2} \left\{ \int_{-\infty}^{\infty} (t - x^*)^2 |w(t)|^2 dt \right\}^{1/2}$$

• Then, $(\tilde{G}_b f)(\omega)$ gives local information on f in the time-window

$$[x^* + b - \Delta_w, x^* + b + \Delta_w]$$

- We can determine the center ω^* and the radius $\Delta_{\hat{w}}$ of the (frequency) window function \hat{w} using formulae similar to the above
- Defining $V_{b,\omega}(\eta) \triangleq \frac{1}{2\pi} \hat{W}_{b,\omega}(\eta) = \frac{1}{2\pi} e^{ib\omega} e^{-ib\eta} \hat{w}(\eta \omega)$, which is also a window function with the center $\omega^* + \omega$ and radius $\Delta_{\hat{w}}$ we can write (using the Parseval identity) $(\tilde{G}_b f)(\omega) = (f, W_{b,\omega}) = (\hat{f}, V_{b,\omega})$
- Thus, $(\tilde{g}_b f)(\omega)$ also gives local spectral information about t in the frequency window

$$[\omega^* + \omega - \Delta_{\hat{\mathcal{W}}}\omega^* + \omega + \Delta_{\hat{\mathcal{W}}}]$$

Wavelets — Uncertainty principle (III)

• Therefore by choosing $w \in L_2(\mathbb{R})$ such that both $xw(x) \in L_2(\mathbb{R})$ and $x\hat{w}(x) \in L_2(\mathbb{R})$ to define a windowed Fourier transform $(\tilde{\mathcal{G}}_b f)(\omega)$ we obtain localization in a time–frequency window

$$[x^* + b - \Delta_w, x^* + b + \Delta_w] \times [\omega^* + \omega - \Delta_{\hat{v}_w} \omega^* + \omega + \Delta_{\hat{v}_w}]$$

with area equal to $4\Delta_w \Delta_{\tilde{w}}$

- In fact, there is a relation between possible time and frequency windows which is made precise in the following theorem
- Heisenberg Uncertainty Principle Let $w \in L_2(\mathbb{R})$ be chosen so that $xw(x) \in L_2(\mathbb{R})$ and $x\hat{w}(x) \in L_2(\mathbb{R})$. Then

$$\Delta_w \Delta_{\hat{w}} \geq \frac{1}{2}$$

Furthermore, equality is attained if and only iff

$$w(t) = ce^{i\alpha t}g_{\alpha}(t-b),$$

where $c \neq 0$, $\alpha > 0$, and $a, b \in \mathbb{R}$.

WAVELETS — UNCERTAINTY PRINCIPLE (IV)

- Proof of the Heisenberg Uncertainty Principle
 - Let us assume that the centers x^* and ω^* are zero (if they are not, then we can modify w as $\tilde{w}(t) = e^{-i\omega^* t} f(t + x^*)$)
 - We observe that

$$\Delta_{w}^{2} \Delta_{\hat{w}}^{2} = \frac{\int_{-\infty}^{\infty} t^{2} |w(t)|^{2} dt \int_{-\infty}^{\infty} \omega^{2} |\hat{w}(\omega)|^{2} d\omega}{\|w\|_{2}^{2} \|\hat{w}\|_{2}^{2}}$$

$$= \frac{\int_{-\infty}^{\infty} t^{2} |w(t)|^{2} dt \int_{-\infty}^{\infty} |w'(t)|^{2} dt}{\|w\|_{2}^{4}}$$

Using the Schwarz inequality we get

$$\Delta_{w}^{2} \Delta_{\hat{w}}^{2} \ge \frac{1}{\|w\|_{2}^{4}} \left[\int_{-\infty}^{\infty} |t\overline{w}(t)w'(t)| \, dt \right]^{2}$$

$$\ge \frac{1}{\|w\|_{2}^{4}} \left[\int_{-\infty}^{\infty} \frac{t}{2} \left[\overline{w}(t)w'(t) + \overline{w'}(t)w(t) \right] \, dt \right]^{2}$$

$$\ge \frac{1}{4\|w\|_{2}^{4}} \left[\int_{-\infty}^{\infty} t(|w(t)|^{2})' \, dt \right]^{2}$$

WAVELETS — UNCERTAINTY PRINCIPLE (V)

- Proof of the Heisenberg Uncertainty Principle continued
 - Integrating by parts and noting that $\lim_{|t|\to 0} \sqrt{t} f(t) = 0$ (since $|t|^{1/2} w(t) \in L_2(\mathbb{R})$ seen earlier) we obtain

$$\Delta_w^2 \Delta_{\hat{w}}^2 \ge \frac{1}{4\|w\|_2^4} \left[\int_{-\infty}^{\infty} |w(t)|^2 dt \right]^2 = \frac{1}{4}$$

– An equality will be obtained when the Schwarz inequality becomes an equality; this implies that there exists $b \in \mathbb{C}$ such that

$$w'(t) = -2btw(t)$$

so that there exists an $a \in \mathbb{C}$ such that $w(t) = ae^{-bt^2}$

- Thus the Gabor transform has the smallest possible time–frequency window.
- The above Heisenberg Uncertainty Principle has far—reaching consequences.

INTEGRAL WAVELET TRANSFORM (I)

- The short–time Fourier transform has a rigid time–frequency window, in the sense that its width (Δ_w) is unchanged for all frequencies analyzed; this turns out to be a limitation when studying functions with varying frequency content
- The Integral Wavelet Transform provides a window which:
 - automatically narrows when focusing on high frequencies,
 - automatically widens when focusing on low frequencies
- If $\psi \in L_2(\mathbb{R})$ satisfies the "admissibility" condition

$$C_{\Psi} \stackrel{\triangle}{=} \int_{-\infty}^{\infty} \frac{|\hat{\psi}(\omega)|^2}{|\omega|} d\omega < \infty,$$

then ψ is called a basic wavelet. Relative to every basic wavelet ψ . the integral wavelet transform (IWT) in $L_2(\mathbb{R})$ is defined by

$$(W_{\Psi}f)(a,b) \triangleq |a|^{\frac{1}{2}} \int_{-\infty}^{\infty} f(x) \Psi\left(\frac{x-b}{a}\right) dx, \ f \in L_2(\mathbb{R}), \ a \neq 0, b \in \mathbb{R},$$

INTEGRAL WAVELET TRANSFORM (II)

• Hereafter we will assume that $t\psi(t) \in L_2(\mathbb{R})$ and $\omega \hat{\psi}(\omega) \in L_2(\mathbb{R})$, so that the basic wavelet ψ provides a time-frequency window with finite area

• From the above assumption it also follows that $\hat{\psi}$ is a continuous function and therefore finiteness of C_{ψ} implies

$$\hat{\mathbf{\psi}}(0) = 0 \implies \int_{-\infty}^{\infty} \mathbf{\psi}(t) dt = 0$$

Setting

$$\psi_{b;a}(t) \triangleq |a|^{-\frac{1}{2}} \psi\left(\frac{t-b}{a}\right),$$

the IWT can be written as $(W_{\psi}f)(b,a) = (f,\psi_{b,a})$

- If the wavelet ψ has the center and radius given by t^* and Δ_{ψ} , respectively, then the function $\psi_{b;a}$ has its center at $b + at^*$ and radius equal to $a\Delta_{\psi}$
- Thus, the IWT provides local information about the function f in a time window

$$[b + at^* - a\Delta_{\Psi}, b + at^* + a\Delta_{\Psi}]$$

which narrows down as $a \rightarrow 0$.

INTEGRAL WAVELET TRANSFORM (III)

• Consider the Fourier transform of a basic wavelet

$$\frac{1}{2\pi}\hat{\Psi}_{b;a}(\omega) = \frac{|a|^{-\frac{1}{2}}}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \psi\left(\frac{t-b}{a}\right) dt = \frac{a|a|^{-\frac{1}{2}}}{2\pi} e^{-i\omega t} \hat{\psi}(\omega)$$

- Suppose that $\hat{\psi}$ has the center ω^* and radius $\Delta_{\hat{\psi}}$. Defining $\eta(\omega) \triangleq \hat{\psi}(\omega + \omega^*)$ we obtain w window function with center at the origin and unchanged radius
- Applying the Parseval identity to the definition of the IWT we obtain

$$(W_{\Psi}f)(a,b) = \frac{a|a|^{-\frac{1}{2}}}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} \overline{\eta(a\omega - \omega^*)} d\omega,$$

which, modulo multiplication by a constant factor and a linear frequency shift, localized information about the function f to the frequency window

$$\left[\frac{\omega^*}{a} - \frac{1}{a}\Delta_{\hat{\Psi}}, \frac{\omega^*}{a} + \frac{1}{a}\Delta_{\hat{\Psi}}\right]$$

INTEGRAL WAVELET TRANSFORM (IV)

• Note that the ratio of the center frequency ω^*/a to the bandwidth $2\Delta_{\hat{\Psi}}/a$

$$\frac{center\ frequency}{bandwidth} = \frac{\omega^*}{2\Delta_{\hat{\psi}}}$$

is independent of the scaling *a*; thus, the bandwidth grows with frequency in an adaptive fashion (constant–Q filtering)

• Reconstruction of a function from its IWT Let ψ be a basic wavelet, then $\forall f, g \in L_2(\mathbb{R})$

$$\int_0^\infty \left[\int_{-\infty}^\infty (w_{\Psi} f)(b, a) \overline{(w_{\Psi} f)(b, a)} db \right] \frac{da}{a^2} = \frac{1}{2} C_{\Psi}(f, g)$$

Furthermore, for any $f \in L_2(\mathbb{R})$ and $x \in \mathbb{R}$ at which f is continuous

$$f(x) = \frac{2}{C_{\Psi}} \int_0^{\infty} \left[\int_{-\infty}^{\infty} (w_{\Psi} f)(b, a) \Psi_{b;a}(x) db \right] \frac{da}{a^2}$$

Proof — using the Parseval identity, integrating with respect to da/a^2 and using the definition of C_{Ψ}

Note the role of the admissibility condition for ψ

DISCRETE WAVELET TRANSFORM (I)

• Consider the IWT at a discrete set of samples $a = 2^{-j}$ and $b = k2^{-j}$ for some $j, k \in \mathbb{Z}$

$$(W_{\Psi}f)\left(\frac{k}{2^{j}},\frac{1}{2^{j}}\right) = \int_{-\infty}^{\infty} f(x)\overline{2^{j/2}\Psi(2^{j}x-k)}\,dx = (f,\Psi_{j,k})$$

where

$$\psi_{j,k} \triangleq 2^{j/2} \psi(2^j x - k)$$

must be chosen so that $\psi_{j,k}$ form a Riesz basis in $L_2(\mathbb{R})$ (i.e, the linear span of $\psi_{j,k}$ with $j,k \in \mathbb{Z}$ is dense in $L_2(\mathbb{R})$)

• If $\psi_{j,k}$ with $j,k \in \mathbb{Z}$ is a Riesz basis, the the relation

$$(\psi_{j,k},\psi^{l,m})=\delta_{j,l}\delta_{k,m}, \quad j,k,l,m\in\mathbb{Z}$$

uniquely defines another Riesz basis $\psi^{l,m}$ known as the dual basis

• Thus, every function $f \in L_2(\mathbb{R})$ has a unique representation

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \psi^{j,k}(x)$$

DISCRETE WAVELET TRANSFORM (II)

• For the above representation to qualify as a wavelet series, the the dual basis $\psi^{j,k}$ must be obtained from some basic wavelet $\tilde{\psi}$ by $\psi^{j,k}(x) = \tilde{\psi}_{j,k}(x)$, where

$$\tilde{\Psi}_{j,k} \stackrel{\Delta}{=} 2^{j/2} \tilde{\Psi}(2^j x - k)$$

- In general, $\tilde{\psi}$ does not necessarily exist
- If ψ is chosen so that $\tilde{\psi}$ does exist, the pair $(\psi, \tilde{\psi})$ can be used interchangeably

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \tilde{\psi}_{j,k}(x) = \sum_{j,k=-\infty}^{\infty} (f, \tilde{\psi}_{j,k}) \psi_{j,k}(x)$$

- ullet ψ and $\tilde{\psi}$ are called wavelet and dual wavelet, respectively
- If the basis $\psi_{j,k}$ is orthogonal, i.e., $\psi_{j,k} = \psi^{j,k}$ for $j,k \in \mathbb{Z}$, we obtain an orthogonal wavelet transform

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \psi_{j,k}(x)$$

DISCRETE WAVELET TRANSFORM (III)

• Consider a wavelet ψ and the Riesz basis $\psi_{j,k}$ it generates; for each $j \in \mathbb{Z}$, let W_j denote the closure of the linear span of $\{\psi_{j,k} : k \in \mathbb{Z}\}$, i.e.,

$$W_j \triangleq \operatorname{clos}_{L_2(\mathbb{R})} \{ \psi_{j,k} : k \in \mathbb{Z} \}$$

• Evidently, $L_2(\mathbb{R})$ can be decomposed as a direct sum of the spaces W_j (dots over pluses indicate "direct sums")

$$L_2(\mathbb{R}) = \sum_{j \in \mathbb{Z}}^{\bullet} W_j \triangleq \cdots \dotplus W_{-1} \dotplus W_0 \dotplus W_1 \dotplus \dots$$

and therefore every function $f \in L_2(\mathbb{R})$ has a unique decomposition

$$f(x) = \cdots + g_1(x) + g_0(x) + g_1(x) + \dots$$

where $g_j \in W_j$, $\forall j \in \mathbb{Z}$

• if ψ is an orthogonal wavelet, then the subspaces $W_j \in L_2(\mathbb{R})$ are mutually orthogonal $W_j \perp W_l$, $j \neq l$ which means that

$$(g_j, g_l) = 0, \quad j \neq l$$

where $g_j \in W_j$ and $g_l \in W_l$

DISCRETE WAVELET TRANSFORM (IV)

• Therefore, in such case, the direct sum becomes an orthogonal sum

$$L_2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j \triangleq \cdots \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus \ldots$$

• Thus, an orthogonal wavelet ψ generates an orthogonal decomposition of the space $L_2(\mathbb{R})$, as the functions g_j are both unique and mutually orthogonal

MULTIRESOLUTION ANALYSIS (I)

• For every wavelet ψ (not necessarily orthogonal) we can consider the following space $V_j \in L_2(\mathbb{R}), \forall j \in \mathbb{Z}$

$$V_j = \cdots \dotplus W_{j-2} \dotplus W_{j-1}$$

- The subspaces V_i have the following very interesting properties:
 - 1. $\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots$
 - 2. $\operatorname{clos}_{L_2}\left(\bigcup_{j\in\mathbb{Z}}V_j\right)=L_2(\mathbb{R})$
 - 3. $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$
 - 4. $V_{i+1} = V_i \dotplus W_i$, $j \in \mathbb{Z}$
 - 5. $f(x) \in V_j \Leftrightarrow f(2x) \in V_{j+1}, j \in \mathbb{Z}$
- Note that
 - In contrast to the subspaces W_j which satisfy $W_j \cap W_l = \{0\}$, $j \neq l$, the sequence of subspaces V_j is nested (1°)
 - Every $f \in L_2(\mathbb{R})$ can be approximated arbitrarily accurately by its projections $P_j f$ on V_j (2°)

MULTIRESOLUTION ANALYSIS (II)

• If the reference subspace V_0 is generated by a single scaling function $\phi \in L_2(\mathbb{R})$ in the sense that

$$V_0 = \operatorname{clos}_{L_2(\mathbb{R})} \{ \phi_{0,k} : k \in \mathbb{Z} \}$$

where

$$\phi_{j,k} \triangleq 2^{j/2} \phi(2^j x - k),$$

then all the subspaces V_j are also generated by the same ϕ as

$$V_j = \operatorname{clos}_{L_2(\mathbb{R})} \{ \phi_{j,k} : k \in \mathbb{Z} \}$$

in the same way as the subspaces W_j are generated by the wavelet ψ

- In the multiresolution analysis at a given scale (j+1)
 - the subspace V_i represents the "large scale" features of the function
 - the subspaces W_j represents the "small scale" features (details) of the function