Chebyshev Spectral Methods

CHEBYSHEV POLYNOMIALS —
REVIEW (1)
e General properties of orthogonal polynomials
- Suppose | = [a,b] is a given interval. Let w: | — R™ be a weight
function which is positive and continuous on |
— Let L2(1) denote the space of measurable functions v such that

Il = ( v s dx) <o

— L2(1)isa Hilbert space with the scalar products

(U,V)e = /u(x)v(x)w(x)dx
|
e Chebyshev polynomials are obtained by setting
— the weight: w(x) = (1—x2)~z
— theinterval: 1 =[-1,1]
— Chebyshev polynomials of degree k are expressed as

Te(x) = cos(kcos 1x), k=0,1,2,...
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CHEBYSHEV POLYNOMIALS —
REVIEW (I1)

e By setting x = cos(z) we obtain Ty = cos(kz) , therefore we can derive
expressions for the first Chebyshev polynomials

To=1, Ty =cos(z) =x, Tp=c0s(2z) =2c0s%(z) —1=2x*—1, ...
e More generally, using the de Moivre formula, we obtain
cos(kz) =0 [(cos(z)-ﬁ-isin(z))k ,
from which, invoking the binomial formula, we get

m(k=m—=1)!

[k/2]
Z ml k—2m)! (2972,

where [a] represents the integer part of a

the formula Ty (x) = cos(kcos~1x) instead!

o Note that the above expression is computationally useless — one should use
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CHEBYSHEV POLYNOMIALS —
REVIEW (111)

o The trigonometric identity cos(k + 1)z + cos(k — 1)z = 2cos(z) cos(kz)
results in the following recurrence relation

2Tk = Tkrr +Tk-1, kK>1,
which can be used to deduce Ty, k > 2 based on Tg and Ty only

o Similarly, for the derivatives we get

' 9 ostan 2 4 dx\ s
kadz(cos(kz))dxf dz(cos(kz)<dz> =k—

which, upon using trigonometric identities, yields

Teor Tea
pa L = L C S S
K=kl k-1 T
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CHEBYSHEV POLYNOMIALS —
REVIEW (1V)

o Note that simply changing the integration variable we obtain

/ f(x dx—/ f(cosB) dB

This also provides an isometric (i.e., norm—preserving) transformation
ueL2(l) — 0 e L?(0,m), where (i(8) = u(cos )

e Consequently, we obtain

1 T
(Tk,T.)w:/ TkT|oodx:/0 cos(k8) cos(18) 8 = 7 cida,
-1

2 ifk=0,
Ck = .
1 ifk>1

o Note that Chebyshev polynomials are orthogonal , but not orthonormal
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CHEBYSHEV POLYNOMIALS — CHEBYSHEV POLYNOMIALS —
ReEVIEW (V) NUMERICAL INTEGRATION FORMULAE (1)

e The Chebyshev polynomials T (x) vanish at the points x; (the Gauss points ) Fundamental Theorem of Gaussian Quadrature — The abscissas of the
defined by N-point Gaussian quadrature formula are precisely the roots of the

Xj = C0s < 2] ;(1)11) , orthogonal polynomial for the same interval and weighting function.

There are exactly k distinct zeros in the interval [—1,1] The Gauss-Chebyshev formula (exact for u € Pan-1)

o Note that —1 < Ty < 1; furthermore the Chebyshev polynomials Ty (x) reach /1 u(x)w(x)dx = —

Xj),
their extremal values at the points xj (the Gauss—Lobatto points) -1 N JZl

Xj = c0S (%) , j=0,....k with xj = cos <(21 ) (the Gauss points located in the interior of the
domain only)
There are exactly k+ 1 real extrema in the interval [—1,1]. Proof via straightforward application of the theorem quoted above.

Chebyshev Spectral Methods Chebyshev Spectral Methods

CHEBYSHEV POLYNOMIALS — CHEBYSHEV POLYNOMIALS —
NUMERICAL INTEGRATION FORMULAE (I1) NUMERICAL INTEGRATION FORMULAE (I11)

e The Gauss—Radau—Chebyshev formula (exact for u € Poy) e The Gauss-Lobatto—Chebyshev collocation point are most commonly used

N in Chebyshev spectral methods, because this set of point also includes the

g |V +2 Y U(Ej)} ; boundary points (which makes it possible to easily incorporate the boundary
= conditions in the collocation approach)

with &j = cos ( 2N+l) (the Gauss-Radau points located in the interior of the Using the Gauss—Lobatto—Chebyshev points, the orthogonality relation for

domain and on one boundary, useful e.g., in annular geometry) the Chebyshev polynomials Ty and Tj with 0 <k, <N can be written as
Proof viaapplication of the above theorem and using the roots of the polynomial N g

Qu1(¥) = Tu(@) T2 (X) — Tura (@) T (X) which vanishesat x = a = +1 T T = /1 Tt = 1 Z) TEME) = %6%
-1 g
The Gauss—Lobatto—Chebyshev formula (exact for u € Poy) S
ifk=0,
ifl<k<N-1,
2 ifk=N

u(&o) +u(&x +ZZ

with E j = cos ( (the Gauss—Lobatto points located in the interior of the
domain and on both boundaries) Note similarity to the corresponding discrete orthogonality relation obtained
Proof viaapplication of the theorem quoted above. for the trigonometric p0|yn0mia|s
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CHEBYSHEV APPROXIMATION —
GALERKIN APPROACH (1)

Consider an approximation of u € L2/(1) in terms of a truncated Chebyshev
series Un(X) = SR o0k Tk(X)

Cancel the projections of the residual Ry =u—un on the N + 1 first basis
function (i.e., the Chebyshev polynomials)

1 N
(RN7T|)(.0:/ (UTWO— ZoﬁkaT|(D) dx=0, I=0,...,N
-1 &

Taking into account the orthogonality condition expressions for the
Chebyshev expansions coefficients are obtained

2 1
Uy = — / uTkwdx,
TCk J-1

which can be evaluated using, e.g., the Gauss—Lobatto—Chebyshev
quadratures.

Question — What happens on the boundary?

CHEBYSHEV APPROXIMATION —
GALERKIN APPROACH (I1)

o LetPy: Lﬁ,(l) — PN be the orthogonal projection on the subspace Py of
polynomials of degree <N

e Forall pand o such that 0 < p < o, there exists a constant C such that
lu—Pyullpew < CNeo) [lullo.e

where L
2u—0—§ forp>1,
e(W,0) =

Eu—c for0<p<1

Philosophy of the proof:

1. First establish continuity of the mapping u — 0, where G(8) = u(cos(8)),
from the weighted Sobolev space H{(1) into the corresponding periodic
Sobolev space Hp'(—1t 1)

2. Then leverage analogous approximation error bounds established for the
case of trigonometric basis functions
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (1)

Consider an approximation of u € L2/(1) in terms of a truncated Chebyshev
series (expansion coefficients as the unknowns) up(x) = zE:O Gk Tk (X)

Cancel the residual Ry = u—un on the set of Gauss—Lobatto—Chebyshev
collocation points xj, j =0,...,N (one could choose other sets of collocation
points as well)

N
ulxj) =y GTk(xj), j=0,...,N
D= 2,

Noting that Ty (xj) = cos (kcos‘ (cos(%))) = cos(k ™) and denoting

uj = u(x;j) we obtain

uj= %Oﬂkcos(klj), j=0,...,N
& N

The above system of equations can be written asU = 7 U, where U and U
are vectors of grid values and expansion coefficients.

CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (I11)

e In fact, the matrix 7 is invertible and

2 kj .

1

T ik = —_— k=0,...,N
[ ]Jk CjCkN COS( N >’ ) ’

e Consequently, the expansion coefficients can be expressed as follows

Ok = CkNZO—chos< ) CkNZO—uJD{ } k=0,...,N

Note that this expression is nothing else than the cosine transforms of U
which can be very efficiently evaluated using a cosine FFT

e The same expression can be obtained by
— multiplying each side of uj = zk o UkTi(x;) by = ( i)
— summing the resulting expression from j=0to j =

— using the discrete orthogonality relation § ZJ 0 lTk(z )T (E
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (111)

o Note that the expression for the Discrete Chebyshev Transform

N .
ﬂk:,i%,iujcos<@), k=0,...,N
tkN =1 N

can also be obtained by using the Gauss—Lobatto—Chebyshev quadrature to
approximate the continuous expressions

2 1

Ok = —/ uTkwdx, k=0,...,N,
Ty J-1

Such an approximation is exact for u € Py

e Analogous expressions for the Discrete Chebyshev Transforms can be
derived for other set of collocation points (Gauss, Gauss—Radau)

Chebyshev Spectral Methods

CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (1V)

As was the case with Fourier spectral methods, there is a very close
connection between collocation—based approximation and interpolation

Discrete Chebyshev Transform can be associated with an interpolation
operator Pc:CO(1) — RN defined such that (Pcu)(xj) = u(xj), j =0,...,N
(where x;j are the Gauss—Lobatto collocation points)

Lets > % and o be given and 0 < g <'s. There exists a constant C such that
[Ju—Peullo.w < CN?7*[ulls

forallue HZ(1).

Philosophy of the proof — changing the variables to 0(68) = u(cos(6)) we
convert this problem to the problem already studied for in the context of the
Fourier spectral methods
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (V)

o Relation between the Galerkin and collocation coefficients, i.e.,

e Using the representation u(x) = 3>, GFT; (x) in the latter expression and
invoking the discrete orthogonality relation we obtain

S 6| S LropTop| « 2 5 | Lroome)
— 0} —Tk(Xi))Ti(Xj) | + — G —Te(Xj)Ti(Xj) |,
K ;ocj PDTiXj SN | £, K J;Cj PDTiXj

©
ﬂﬁCH

&N £

SCCRCT)
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (V1)

e Using the identity

5e=(5)-

we can calculate Cy; which allows us to express the relation between the
Galerkin and collocation coefficients as follows

{N+1, ifp=2mN, m=0,4+1,+2,...

; 1+ (-1)P] otherwise

0

®
> Ot Y @Cyiom
1

m= m=1
2mN>N—k 2mN>N+k

e The terms in square brackets represent the aliasing errors . Their origin is
precisely the same as in the Fourier (pseudo)-spectral method.

e Aliasing errors can be removed using the 3/2 approach in the same way as
in the Fourier (pseudo)-spectral method
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CHEBYSHEV APPROXIMATION —
RECIPROCAL RELATIONS

e expressing the first N Chebyshev polynomials as functions of XX, k =1,...,N

which can be written as V = KX , where [V]x = Tx(x), [X]x =x¥, and K is a
lower—triangular matrix

e Solving this system (trivially!) results in the following reciprocal relations
1="To(x),

x=Ti(x),

X = 5[To() + o),

X = Z13T0 +To(4),
- %[m(x) ATy () + T ()]
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CHEBYSHEV APPROXIMATION —
ECONOMIZATION OF POWER SERIES

Find the best polynomial approximation of f(x) =e* on [—1,1]

Construct the (Maclaurin) expansion

1 1 1
=14+X+ X+ X+ =Xt
X X 2

Rewrite the expansion in terms of Chebyshev polynomials using the
reciprocal relations

81 9
ef = —To(X) + ng(X)

13 1 1
= 62 T2(X)+—T3(X)+@T4( )+

BT 24
Truncate this expansion and translate the expansion back to the xK
representation

Truncation error is given by the magnitude of the first truncate term; Note
that the Chebyshev Expansion coefficients are much smaller than the
corresponding Taylor expansion coefficients !

How is it possible — the same number of expansion terms, but higher
accuracy?
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CHEBYSHEV APPROXIMATION —
SPECTRAL DIFFERENTIATION (1)
e First, note that Chebyshev projection and differentiation do not commute,
e, Pu(3) 2 & (Pyu)
e Sequentially applying the recurrence relation 2Ty = % — % we obtain
K

1 k—1
T/ (x) = 2k Te1- x.whereK:{—}
k(X) pZoCk—l—Zp k—1-2p(X), >

e Consider the first derivative

N
U0 = 3 BT = Y GUT(x)
k=0 0

where, using the above expression for T/(x), we obtain the expansion

coefficients as \
2
G)== S plp, k=0...N-1
Gk %
(p+k)odd

and 05\11) =0
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CHEBYSHEV APPROXIMATION —
SPECTRAL DIFFERENTIATION (11)

e Spectral differentiation can thus be written as

where U = [do ..., an]T, 0@ = 6P ..., a("]T, and D is an
upper-triangular matrix with entries deduced via the previous expression

e For the second derivative

N
wx) =3 02 T(x)
N =2 G

N
S PP - Kby k=0,...,N-2

p=k+2
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CHEBYSHEV APPROXIMATION —

DIFFERENTIATION IN PHYSICAL SPACE (1)
) CHEBYSHEV APPROXIMATION —

o Determine the Chebyshev approximation to a derivative uy’ based on the DIFFERENTIATION IN PHYSICAL SPACE (| |)

nodal values of uy (needed for the collocation approach with nodal values as
unknowns)

N R

ul (x)) = > dEE)UN(Xj)a i=0,...,N e Expressions for the entries of df&) at the the Gauss—Lobatto—Chebyshev
K= collocation points

4 _ S (D

1. use the expression U = g4 3} ¢-Uj Tk(X;) to eliminate Uy from Ko o ow OShksN#k

e The differentiation matrix [d(m}jk can be determined as follows

(p) S (p) .
uy’ (xj) = Zoﬂkap (xj), j=0,...,N
k=

. express Ty(xj) and Tk(p> (xj) in terms of trigonometric functions using
Tk = cos(kz)
3. apply classical trigonometric identities to evaluate the sums

. return to the representation in terms of T (x])
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CHEBYSHEV APPROXIMATION — CHEBYSHEV APPROXIMATION —
DIFFERENTIATION IN PHYSICAL SPACE (I11) GALERKIN APPROACH

e Expressions for the entries of d}? at the the Gauss—Lobatto—Chebyshev

collocation points (U(? = D) o Consider an elliptic boundary value problem
i 2
@ _ (_1)J+k Xj +Xjx —2 i . " / _
djic = Tk (1—XJZ)(Xj—Xk)2’ 1<j<N-1,0<ks<N, j#k —wuitarfbu=t,
42 _ (N2—1)(1—x3)+3 . ,
ii 7—3(17—)(]2)27 <J= ) apu+piu =gy

a u+pu=g_

(—D* (N> +1)(1-x) 6 k< e Chebyshev polynomials do not satisfy homogeneous boundary conditions,

— 2
(=% hence standard Galerkin approach is not directly applicable.
(=DNFK (2N2 4 1) (14-x) — 6

e The Chebyshev basis can be modifies, for instance the following function
satisfy the homogeneous Dirichlet boundary conditions u(+1) =0

Tk(x) = To(x) =Tk — 1, k —even
{Tk(x)—T (%), k — odd

o Note that (%)

4@ _ 5 g
k pZO Ip “pk However, thus constructed basis {¢} is no longer orthogonal




Chebyshev Spectral Methods

CHEBYSHEV APPROXIMATION —
TAU METHOD (I)

The Tau method consists in using a Galerkin approach in which explicit
enforcement of the boundary conditions replaces projections on some of the
test functions

Consider the residual
Rn (X) = —vuy, +aup +buy — T,
where un (x) = SR 0k Tk (%)

Cancel projections of the residual on the first N — 2 basis functions

R = — (2) (1) o] b dx — ' f d | = —
s vi,” +ad,™” +bi / wax / wax, o,..., N—-2
(Rn, I)w kz < K K k) 1 ki 1 | ) e

Thus, using orthogonality, we obtain
7\)[]1((2) +aljl<(l) +biy = fk, k=0,...,N—2

where f = /1, fTeodx
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CHEBYSHEV APPROXIMATION —
TAU METHOD (1)

e The above equations are supplemented with
N

k;(fmk(af —B-K?)G =g
N

> (=D*(oy +Bk?)d =g
k=0

Note that Ty (+1) = (+1)% and T/(£1) = (£1)+1k?
Replacing GI((Z> and Ol((l> by their respective representations in terms of Gy we
obtain the following system

AU =F

where U = [do,...,0n]T, F = [fo,..., fu_2,0_ .0 ] and the matrix A is
obtained by adding the two rows representing the boundary conditions (see

above) to the matrix Aj = —vID?+al + bl.

When the domain boundary is not just a point (e.g., in 2D/3D), formulation
of the Tau method becomes somewhat more involved
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CHEBYSHEV APPROXIMATION —
COLLOCATION METHOD (1)

e Consider the residual
Rn (X) = —vupy -+ auy + buy — f,
where uy(x) = SR o GkTi(X)

e Cancel this residual at N —1 Gauss—Lobatto—Chebyshev collocation points
located in the interior of the domain

—vuy (xj) +auy (xj) +bun (xj) = f(xj), j=1,....N-1
e Enforce the two boundary conditions at endpoints

o un (xn) +B-uy (Xn) = g-

o U (Xo) +Buy (Xo) = g-
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CHEBYSHEV APPROXIMATION —
COLLOCATION METHOD (I1)

e Consequently, the following system of N + 1 equations is obtained

N
kzo(—vd}f) +adj )un (xj) +bun (x}) = (x;), j=1....N~1

N
o-un(xn) +B- Y A un () = g
o

N
sy () B 3 do'un ) =g
K=
which can be written as AcU = F where [Ac]jk = [Aco]jk,
j,k=1,...,N—1with Ao given by
Aco = (—vD?+aD +bI)U
and the boundary conditions above added as the rows 0 and N of A¢

o Note that the matrix corresponding to this system of equations may be poorly
conditioned, so special care must be exercised when solving this system for
large N.
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CHEBYSHEV APPROXIMATION —
NONCONSTANT COEFFICIENTS AND NONLINEAR
EQUATIONS
e When the equations has nonconstant coefficients, similar difficulties as in the
Fourier case are encountered (related to evaluation of convolution sums)
Consequently, the collocation (pseudo—spectral) approach is preferable

following the guidelines laid out in the case of the Fourier spectral methods

Assuming a=a(x) in the elliptic boundary value problem, we need to make
the following modification to A:

ALy = (—vD?+ D' +bI)U,

where D' = [a(xj)dﬁ)}, jk=1,....N

For the Burgers equation o;u + %6Xu2 —va2u we obtain at every time step
(I—atvD@)UM =u" —AtDW",

where [W"]; = [U"];[U"];; Note that an algebraic system has to be solved at
each time step
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EPILOGUE — DOMAIN DECOMPOSITION

e Motivation:
— treatment of problem in irregular domains
— stiff problems
e Philosophy — partition the original domain Q into a number of subdomains
{Qm},'\T”bl and solve the problem separately on each those while respecting
consistncy conditions on the interfaces
e Spectral Element Method

— consider a collection of problem posed on each subdomain Qp,
LUm=f

Um-1(8m) = Um(am), Um(@m+1) = Umy1(@m1)
— Transform each subdomain Qm to | =[—1,1]
— use weak formulation and a separate set of Ny, orthogonal polynomials
to approximate the solution on every subinterval

— boundary conditions on interfaces provide coupling between problems on
subdomains




