Spectral Methods

SOLUTION OF A MODEL ELLIPTIC PROBLEM

e Consider the following 1D second-order elliptic problem
cu=vd’ —au +bu=f,
where v, aand b are constant and f = f(X) is a smooth 2reperiodic function.

e Forv=10,a=1, b=5 and the RHS function
f(x) = €3 [v(cos?(x) —sin(x)) —acos(x) +b] the solution is
u(x) = e

o We are interested in 21eperiodic solutions in the form

UN (X) = erikx
\kéN

e To be analyzed:
— Galerkin method

— Collocation method (two variants)

Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
GALERKIN APPROACH (I)

Residual )
Ru(X)=rcuy—f = ; e — f
[K[SN

Cancellation of the residual in the mean (setting to zero projections on the
basis functions Wh(x) = €™)

N
(RuVh) = Y Gk(£€e™)—(f,™)=0, n=—N,..,N
k=—N

Noting that £&® = (—vk? —iak+b)d* £ 5,k we obtain

Assuming G # 0, we obtain Galerkin equations for the coefficients g
Gil = fi,k=—N,....N
— The Galerkin equations are decoupled
— Since uis real, it is necessary to calculate y for k > 0 only

Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (1)

e Residual (determining the expansion coefficients W)
Ru(X) = £uy—f = ; e —f
=N

o Canceling the residual pointwise at the collocation points xj, j =1,...,M
N -
S (Gt —fe®i =0, j=1,...M
k=—N
where (note the aliasing error ) fi = fic+ 312 (o) firim
e Thus, the collocation equations for the Fourier coefficients
Gl = fie = fic+ > fcrim, k=-N,...,N
1eZ\ {0}
— Formally, the Galerkin and collocation methods are distinct
— In practice, the projection ( f,e**) is evaluated using FFT and therefore
also involves aliasing errors. Therefore, for the present problem, the two
approaches are numerically equivalent.

Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (I1)

¢ Residual (determining the nodal values un(Xj), j =1,...,M)
Ry(x) =2uy— f
o Canceling the residual pointwise at the collocation points xj, j =1,...,M
[Ru(X1),...,Ru(xm)]T =LUy — F = (VD —aDy + bI)Uy — F =0,

where Uy = [un(X1), ..., Un(xv)]T and D1 and DD, are the differentiation

matrices.
e Derivation of the differentiation matrices

u (x)) = Z(ik)pﬁke”‘xi
LM = w =

S un (xj)e

=1




Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (111)

o Differentiation Matrices (for even collocation, i.e., IN=—-N+1,...,Nand
M = 2N) L yin
i+j Z(—1)it] = e
q® _ (—1)"*cot(hij) if i +# ] @ 21 N+25in2(hij) if i ]
! 0 ifi=]j ! _(N=D(N-2) ifi=]j
12
o Remarks:

— The differentiation matrices are full (and not so well-conditioned ...), so
the system of equations for un (X;j) is now coupled

— For constant coefficient PDEs the present approach is therefore inferior
to the first collocation approach where the Fourier coefficients are
determined

— Note the relationship to the banded matrices obtained when
approximating differential operators using finite differences

e Question — Derive the above differentiation matrices, also for the case of
odd collocation
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NYQUIST-SHANNON SAMPLING THEOREM

e Ifafunction f(x) has a Fourier transform fi, = 0 for |k| > M, then it is
completely determined by giving the value of the function at a series of
points spaced Ax = ﬁ apart. The values fn = f () are called the samples
of f(x) .

The minimum sample frequency that allows reconstruction of the original
signal, that is 2M samples per unit distance, is known as the Nyquist
frequency . The time in between samples is called the Nyquist interval .

The Nyquist-Shannon sampling theorem is a fundamental tenet in the field
of information theory (originally formulated by Nyquist in 1928, but
formally proved by Shannon only in 1949)
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PDES WITH VARIABLE COEFFICIENTS —
GALERKIN APPROACH (1)

e Consider again the problem £u=vu” —au’ +bu= f, but assume now that
the coefficient a is a function of space a = a(x)

e The following Galerkin equations are obtained for W
N ~
—vk20, —i > Péplp+blik = fi, k=-N,....N,
p=—N

where a(x) = an(x) = SN, R and f(x) = fn(x) = TN\ k€
Note that

N . N
> A Y g (a0 Y
g==N p==N p=—N e
g+p=k
2NN
= Z & plpe™, where &,0q =0, for [g] > N
k=—2N p=—

o Now the Galerkin equations are coupled (a system of equations has to be
solved)
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (1)

o With Fourier coefficients @ as unknowns, the collocation equations

N ) N )
-3 (VK2 + b) R —a(x;) S ke =f(x), j=1,...,M
k=—N k=—N

 Approximations of the Fourier coefficients of a(x) and f(x), g and fg,
respectively, are calculated using Discrete Fourler Transform

N ; N )
a(xj) z ik e |ka _ z A%elpxi z iqAHequj _
=—N N

ing(quAﬂ* 2 aBY+ Z Q@q)e

q+p=k q+p k+N q+p —k— N

N
L S S
k=—N

e The resulting algebraic system

—VkeR—iS+bT=fi, k=-N,...,N,
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I11)

e Expressing (hypothetically) a(x) and f(x) with infinite Fourier series we
obtain

au =i % (Y +8Y +8? +8%)dki
KN

X=Xj

N 3 N
> &lgt Y Y G8simwly
.p=—N m="coq,p=—N
m#0 q+p=k
o N o N
z z qé(;:JerM ﬂq + z z qé(;:JerM Oq
m=—o0 gp=—N m=—

q+p=k+N
e The collocation equation
—vk2a, —i§% +i (éf) +§? +§K3>) +hc= e+ 5 A k=-N....N,
0

o Note that terms in red are absent in the corresponding Galerkin formulation
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I111)

With the nodal values u(x;), j =1,...,M as unknowns, the collocation
equations are (cf. 85)
(VDy — D' +bl)Uy = F,

where the matrix D/ = [a(x,-)d}i)}, j,k=1,....M

Again, solution of an algebraic system is required
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FOURIER TRANSFORMS IN HIGHER DIMENSIONS

e Consider a function u = u(x,y) 2reperiodic in both x and y;
Direct Discrete Fourier Transform

Gk = i/ZTI i/znu(x ek x| ek dy = i/m/zﬂu(x e kT dxd
kx,ky_ 2_‘_[ 0 2_'_[ o 7y y_ 41.[2 o o 7y y7

where k = [ky,ky] isthe wavevector and r = [x,y] is the position vector.

e Representation of a function u= u(x,y) as a double Fourier series

N y ‘ N .
u(x,y) = (i k€Y = Qi o, €
kx.kyZ=—N Y kx<kyz=—N ’
e Fourier transforms in two (and more) dimensions can be efficiently
performed using most standard FFT packages.
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NONLINEAR PDES

Replacing the term au’ with the nonlinear the term uu’ and applying

need to be solved using iterative techniques

From now on we will focus on time—dependent (evolution) PDEs and as a
model problem will consider the Burgers equation

Otu+ udyu—Vvoxu=0 in 0,21 % [0,T]
u(x) = up(X) att=0

Note that steady problems can sometimes be solved as a steady limit of

certain time—dependent problems.

Looking for solution in the form

un(xt) = % G (1)
k=—N

Note that the expansion coefficients y(t) are now functions of time

Denote by uy; the approximation of uy at time tn = nAt, n=0,1,...

Galerkin or collocation method leads to a system of nonlinear equations that
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NONLINEAR PDES —
GALERKIN APPROACH (I)
o Time—discretization of the residual Ry (x,t)
n+liu&

nfuN
RN = Mt

n n n+1
+ UN OxUR — VU

Points to note:

— explicit treatment of the nonlinear term avoids costly iterations

— implicit treatment of the linear viscous term allows one to mitigate the
stability restrictions on the time step At

— here using for simplicity first-order accurate explicit/implicit Euler —
can do much better than that

e system of equations obtained by applying the Galerkin formalism

1 1 N
—+vk2> Optt= —ap —i qifdl, k=—N,...,N
<At Ot p_q;N P
p+a=k

Note truncation of higher modes in the nonlinear term.
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NONLINEAR PDES —
GALERKIN APPROACH (11)

e Evaluation of the nonlinear i z’\,f_q;N q’l‘g’q term in Fourier space results in a
p+a+k

convolution sum which requires o (N?) operations — can do better that that?

Pseudospectral approach — perform differentiation in Fourier space and
evaluate products in real space; transition between the two representations is
made using FFTs which cost “only” o (Nlog(N))

Outline of the algorithm:

1. calculate (using FFT) uy(xj), j =1,...,M from §, k= —N...,N,

2. calculate (using FFT) oxuy (X)), j =1,...,M from ik g, k= —N...,N,

3. calculate the product wy (Xj) = Ug (Xj)oxup (xj), j =1,...,M

4. Calculate (using inverse FFT) Wi, k= —N...,N from wg (x;),
ji=1....M

Note that, because of the aliasing phenomenon , the quantity Wy is different

from § =i ZEﬂEZqu’gq
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NONLINEAR PDESs —
GALERKIN APPROACH (111)
o Analysis of aliasing in the pseudospectral calculation of the nonlinear term
N .
W)= 5 RS, where Wi (x;) = UR (x))9xUR (X))
k=—=N
The Discrete Fourier Transform
W= i\’\f&(xj)e’ikxi -1 i( % ‘ge‘pxi> ( % iq”Qeiqxi) e
M i= M =1 \p=-N a=-N
G2 S ARl S gy s
M J=1p.g=-N N p.g=—N j=
N N
Wi Y aff+i Y affk=-N....N
p.g=-N p.g=-N
p+g=k+M pt+g=k—M
The term W is the convolution sum obtained in the fully spectral Galerkin
approach. The terms inred are the aliasing errors.

e Thus, the pseudospectral Galerkin equations are

1 1
(A—t +vk2> ot = A—taﬂ—\m k=-N,...,N
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NONLINEAR PDESs —
COLLOCATION APPROACH (1)

Time—discretization of the residual Ry (X,t)

un+l —un
Ru= " N 4 Ul oxUl) — Vot

Canceling the residual at the collocation points
1 .
A (U (%)) — Ul (Xj)] + U () OxUR (%)) — VU (X)) =0 j=1,...,M

Straightforward calculation shows that the equation for the Fourier
coefficients g is the same as in the pseudospectral Galerkin approach. Thus
the two methods are numerically equivalent.

Question — Show equivalence of pseudospectral Galerkin and collocation
approaches to a nonlinear PDE
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NONLINEAR PDESs —
ALIASING REMOVAL (1)

“3/2 rule” — extend the spectrum, and therefore also the number of
collocation points, of the quantities involved in the products, so that the
aliasing errors arising in pseudospectral calculations are not present.

Algorithm — consider two 21e-periodic functions

N
g, b (X) = by e
2

k=—N

Calculated in a naive way, the coefficient of the product w(x) = a(x)b(x) are
N R N .
W=+ Y Abg+ Y aghg,
pa=—N p.a=—N
p+g=k+M p+g=k—M

where W are the coefficients of the convolution sum that we want to obtain
(only)
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NONLINEAR PDES —
ALIASING REMOVAL (I1)
. Extend the spectra @ and by to @and Ef( according to

. & if|k <N " by if [k| <N
T )0 ifN<|k <N’ *“ 1o ifN< K <N

The number N’ will be determined later.

. Calculate (via FFT) ans and by in real space on the extended grid X’

i
j:17...,N/ N’ . N/ L
av(¥) =5 &%, by ()= Y B
k=—N' k=—N
. Multiply an (x}) and b (X)): W (xj) = an (Xj) b (%)), j = 1,...,N’
. Calculate (via FFT) the Fourier coefficients of w'(x])

. 1 M’ ik,
W= g 3 WO K= NN W 2N 1
pa

Taking the latter quantity for k= —N, ..., N gives an expression for the
convolution sum free of aliasing errors
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NONLINEAR PDES —
ALIASING REMOVAL (I11)
o Making a suitable choice for N’
Wi = W+ NZ &by, + NZ &by,

p.g=—N’ p.a=—N’
p+a=k+M’ p+a=k—M’

N N
=W+ Y dpbgt Y &by
p.g=—N p.g=-N
p-+g=k-+M’ p+a=k—M’
because §,bg = 0 for |p,|q] > N

e The alias terms will vanish, when one of the frequencies p or g appearing in
each term of the sum is larger than N. Observe that in the first alias term
g=M +k—p=2N'+1+k— p, therefore

min = min 2N +1+k—p)=2N'+1—-2N>N
\k\,\p\SN(q) \ka\SN( P)

Hence 2N’ > 3N — 1. One may take N’ >3N/2 (the “3/2 rule”)

e Analogous argument for the second aliasing error sum.
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HYBRID INTEGRATION SCHEMES FOR ODES
WITH BOTH LINEAR AND NONLINEAR TERMS)

e Consider a model ODE problem

/!

y =r(y)+Ay
e One would like to use a higher—order ODE integrator with
— explicit treatment of nonlinear terms
— implicit treatment of linear terms (with high—order derivatives)

e Combining a three-step Runge—Kutta method with the Crank—Nicholson
method results in the following approach:

h h
<| - %A) Y =y ZEAY b () + i (v ). tk=1,2.3

where




