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SOLUTION OF A MODEL ELLIPTIC PROBLEM

• Consider the following 1D second–order elliptic problem

Lu ≡ νu′′−au′ +bu = f ,

where ν, a and b are constant and f = f (x) is a smooth 2π–periodic function.

• For ν = 10, a = 1, b = 5 and the RHS function

f (x) = esin(x)
[

ν(cos2(x)− sin(x))−acos(x)+b
]

the solution is

u(x) = esin(x)

• We are interested in 2π–periodic solutions in the form

uN(x) = ∑
|k|≤N

ûkeikx

• To be analyzed:

– Galerkin method

– Collocation method (two variants)
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SOLUTION OF AN ELLIPTIC PROBLEM —
GALERKIN APPROACH (I)

• Residual
RN(x) = LuN − f = ∑

|k|≤N

ûkLeikx − f

• Cancellation of the residual in the mean (setting to zero projections on the
basis functions Wn(x) = einx)

(RN ,Wn) =
N

∑
k=−N

ûk(Leikx,einx)− ( f ,einx) = 0, n = −N, . . . ,N

• Noting that Leikx = (−νk2 − iak +b)eikx , Gkeikx we obtain

N

∑
k=−N

Gkûk

Z 2π

0
ei(k−n) dx = f̂n, n = −N, . . . ,N

• Assuming Gk 6= 0, we obtain Galerkin equations for the coefficients ûk

Gkûk = f̂k,k = −N, . . . ,N

– The Galerkin equations are decoupled

– Since u is real, it is necessary to calculate ûk for k ≥ 0 only
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (I)

• Residual (determining the expansion coefficients ûk)

RN(x) = LuN − f = ∑
|k|≤N

ûkLeikx − f

• Canceling the residual pointwise at the collocation points x j, j = 1, . . . ,M

N

∑
k=−N

(Gkûk − f̃k)e
ikx j = 0, j = 1, . . . ,M

where (note the aliasing error ) f̃k = f̂k +∑l∈Z�{0} f̂k+lM

• Thus, the collocation equations for the Fourier coefficients

Gk ûk = f̃k = f̂k + ∑
l∈Z�{0}

f̂k+lM , k = −N, . . . ,N

– Formally, the Galerkin and collocation methods are distinct

– In practice, the projection ( f ,eikx) is evaluated using FFT and therefore

also involves aliasing errors. Therefore, for the present problem, the two

approaches are numerically equivalent.
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (II)

• Residual (determining the nodal values uN(x j), j = 1, . . . ,M)

RN(x) = LuN − f

• Canceling the residual pointwise at the collocation points x j, j = 1, . . . ,M

[RN(x1), . . . ,RN(xM)]T = LUN −F = (νD2 −aD1 +bI)UN −F = 0,

where UN = [uN(x1), . . . ,uN(xM)]T and D1 and D2 are the differentiation

matrices.

• Derivation of the differentiation matrices

u(p)
N (x j) = ∑

k

(ik)pûkeikx j

ûk =
1
M

M

∑
j=1

uN(x j)e
−ikx j



















=⇒ u(p)
N (xi) =

M

∑
j=1

d(p)
i j uN(x j)
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (III)

• Differentiation Matrices (for even collocation, i.e., IN = −N +1, . . . ,N and
M = 2N)

d(1)
i j =







1
2
(−1)i+ j cot(hi j) if i 6= j

0 if i = j
d(2)

i j =















1
4
(−1)i+ jN +

(−1)i+ j+1

2sin2(hi j)
if i 6= j

−
(N −1)(N −2)

12
if i = j

• Remarks:

– The differentiation matrices are full (and not so well–conditioned ...), so

the system of equations for uN(x j) is now coupled

– For constant coefficient PDEs the present approach is therefore inferior

to the first collocation approach where the Fourier coefficients are

determined

– Note the relationship to the banded matrices obtained when

approximating differential operators using finite differences

• Question — Derive the above differentiation matrices, also for the case of

odd collocation
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NYQUIST–SHANNON SAMPLING THEOREM

• If a function f (x) has a Fourier transform f̂k = 0 for |k| > M, then it is

completely determined by giving the value of the function at a series of

points spaced ∆x = 1
2M apart. The values fn = f ( n

2M ) are called the samples

of f (x) .

• The minimum sample frequency that allows reconstruction of the original

signal, that is 2M samples per unit distance, is known as the Nyquist

frequency . The time in between samples is called the Nyquist interval .

• The Nyquist–Shannon sampling theorem is a fundamental tenet in the field

of information theory (originally formulated by Nyquist in 1928, but

formally proved by Shannon only in 1949)
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PDES WITH VARIABLE COEFFICIENTS —
GALERKIN APPROACH (I)

• Consider again the problem Lu = νu′′−au′ +bu = f , but assume now that

the coefficient a is a function of space a = a(x)

• The following Galerkin equations are obtained for ûk

−νk2ûk − i
N

∑
p=−N

pâk−pûp +bûk = f̂k, k = −N, . . . ,N,

where a(x) ∼= aN(x) = ∑N
k=−N âkeikx and f (x) ∼= fN(x) = ∑N

k=−N f̂keikx;
Note that

N

∑
q=−N

âqeiqx
N

∑
p=−N

ûpeipx =
N

∑
q,p=−N

âqûpei(q+p)x =
2N

∑
k=−2N

N

∑
q,p=−N
q+p=k

âqûpeikx

=
2N

∑
k=−2N

N

∑
p=−N

âk−pûpeikx, where âq, ûq ≡ 0, for |q| > N

• Now the Galerkin equations are coupled (a system of equations has to be

solved)
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I)

• With Fourier coefficients ûk as unknowns, the collocation equations

−
N

∑
k=−N

(νk2 +b) ûkeikx j −a(x j)
N

∑
k=−N

ik ûkeikx j = f (x j), j = 1, . . . ,M

• Approximations of the Fourier coefficients of a(x) and f (x), âck and f̂ c
k ,

respectively, are calculated using Discrete Fourier Transform;

a(x j)
N

∑
k=−N

ik ûkeikx j =
N

∑
p=−N

âcpeipx j
N

∑
q=−N

iq ûqeiqx j =

i
N

∑
k=−N







N

∑
q,p=−N
q+p=k

q âcp ûq +
N

∑
q,p=−N

q+p=k+N

q âcp ûq +
N

∑
q,p=−N

q+p=k−N

q âcp ûq






eikx j

, i
N

∑
k=−N

Ŝkeikx j

• The resulting algebraic system

−νk2 ûk − iŜk +b ûk = f̂k, k = −N, . . . ,N,
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (II)

• Expressing (hypothetically) a(x) and f (x) with infinite Fourier series we
obtain

au′
∣

∣

∣

x=x j
= i

N

∑
k=−N

(Ŝ(0)
k + Ŝ(1)

k + Ŝ(2)
k + Ŝ(3)

k )eikx j

= i
N

∑
k=−N







N

∑
q,p=−N
q+p=k

qâc
pûq +

∞

∑
m=−∞
m6=0

N

∑
q,p=−N
q+p=k

qâc
p+mM ûq

+
∞

∑
m=−∞

N

∑
q,p=−N

q+p=k+N

qâc
p+mM ûq +

∞

∑
m=−∞

N

∑
q,p=−N

q+p=k−N

qâc
p+mM ûq







• The collocation equation

−νk2ûk − iŜ(0)
k + i

(

Ŝ(1)
k + Ŝ(2)

k + Ŝ(3)
k

)

+bûk = f̂ e
k +

∞

∑
m=−∞
m6=0

f̂ e
k+mM , k = −N, . . . ,N,

• Note that terms in red are absent in the corresponding Galerkin formulation
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (III)

• With the nodal values u(x j), j = 1, . . . ,M as unknowns, the collocation
equations are (cf. 85)

(νD2 −D′ +bI)UN = F,

where the matrix D
′ =
[

a(x j)d
(1)
jk

]

, j,k = 1, . . . ,M

• Again, solution of an algebraic system is required
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FOURIER TRANSFORMS IN HIGHER DIMENSIONS

• Consider a function u = u(x,y) 2π–periodic in both x and y;
Direct Discrete Fourier Transform

ûkx ,ky =
1

2π

Z 2π

0

[

1
2π

Z 2π

0
u(x,y)e−ikxx dx

]

e−ikyy dy =
1

4π2

Z 2π

0

Z 2π

0
u(x,y)e−ik·r dxdy,

where k = [kx,ky] is the wavevector and r = [x,y] is the position vector.

• Representation of a function u = u(x,y) as a double Fourier series

u(x,y) =
N

∑
kx ,ky=−N

ûkx,ky ei(kxx+kyy) =
N

∑
kx ,ky=−N

ûkx ,ky eik·r

• Fourier transforms in two (and more) dimensions can be efficiently

performed using most standard FFT packages.
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NONLINEAR PDES
• Replacing the term au′ with the nonlinear the term uu′ and applying

Galerkin or collocation method leads to a system of nonlinear equations that

need to be solved using iterative techniques

• From now on we will focus on time–dependent (evolution) PDEs and as a
model problem will consider the Burgers equation

{

∂t u+u∂xu−ν∂xxu = 0 in [0,2π]× [0,T ]

u(x) = u0(x) at t = 0

Note that steady problems can sometimes be solved as a steady limit of

certain time–dependent problems.

• Looking for solution in the form

uN(x, t) =
N

∑
k=−N

ûk(t)e
ikx

Note that the expansion coefficients ûk(t) are now functions of time

• Denote by un
N the approximation of uN at time tn = n∆t, n = 0,1, . . .
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NONLINEAR PDES —
GALERKIN APPROACH (I)

• Time–discretization of the residual RN(x, t)

Rn
N =

un+1
N −un

N

∆t
+un

N ∂xun
N −ν∂xxun+1

N

Points to note:

– explicit treatment of the nonlinear term avoids costly iterations

– implicit treatment of the linear viscous term allows one to mitigate the

stability restrictions on the time step ∆t

– here using for simplicity first–order accurate explicit/implicit Euler —

can do much better than that

• system of equations obtained by applying the Galerkin formalism
(

1
∆t

+νk2
)

ûn+1
k =

1
∆t

ûn
k − i

N

∑
p,q=−N
p+q=k

qûn
pûn

q, k = −N, . . . ,N

Note truncation of higher modes in the nonlinear term.
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NONLINEAR PDES —
GALERKIN APPROACH (II)

• Evaluation of the nonlinear i ∑N
p,q=−N
p+q+k

q ûnp ûnq term in Fourier space results in a

convolution sum which requires O(N2) operations – can do better that that?

• Pseudospectral approach — perform differentiation in Fourier space and

evaluate products in real space; transition between the two representations is

made using FFTs which cost ”only” O(N log(N))

Outline of the algorithm:

1. calculate (using FFT) un
N(x j), j = 1, . . . ,M from ûnk , k = −N . . . ,N,

2. calculate (using FFT) ∂xun
N(x j), j = 1, . . . ,M from ik ûnk , k = −N . . . ,N,

3. calculate the product wn
N(x j) = un

N(x j)∂xun
N(x j), j = 1, . . . ,M

4. Calculate (using inverse FFT) w̃n
k , k = −N . . . ,N from wn

N(x j),

j = 1, . . . ,M

• Note that, because of the aliasing phenomenon , the quantity w̃n
k is different

from ŵnk = i∑N
p,q=−N
p+q=k

q ûnp ûnq
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NONLINEAR PDES —
GALERKIN APPROACH (III)

• Analysis of aliasing in the pseudospectral calculation of the nonlinear term

wn
N(x j) =

N

∑
k=−N

w̃n
keikx j , where wn

N(x j) = un
N(x j)∂xun

N(x j)

The Discrete Fourier Transform

w̃nk =
1
M

M

∑
j=1

wn
N (x j)e

−ikx j =
1
M

M

∑
j=1

(

N

∑
p=−N

ûnpeipx j

)(

N

∑
q=−N

iq ûnqeiqx j

)

e−ikx j

=
1
M

M

∑
j=1

N

∑
p,q=−N

iq ûnp ûnq ei(p+q−k)x j =
1
N

N

∑
p,q=−N

iq ûnp ûnq
M

∑
j=1

ei(p+q−k)x j

= ŵnk + i
N

∑
p,q=−N

p+q=k+M

q ûnp ûnq + i
N

∑
p,q=−N

p+q=k−M

q ûnp ûnq k = −N . . . ,N

The term ŵnk is the convolution sum obtained in the fully spectral Galerkin

approach. The terms in red are the aliasing errors.

• Thus, the pseudospectral Galerkin equations are
(

1
∆t

+νk2
)

ûn+1
k =

1
∆t

ûn
k − w̃n

k , k = −N, . . . ,N
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NONLINEAR PDES —
COLLOCATION APPROACH (I)

• Time–discretization of the residual RN(x, t)

Rn
N =

un+1
N −un

N

∆t
+un

N ∂xun
N −ν∂xxun+1

N

• Canceling the residual at the collocation points

1
∆t

[

un+1
N (x j)−un

N(x j)
]

+un
N(x j)∂X un

N(x j)−ν∂xxun+1
N (x j) = 0 j = 1, . . . ,M

• Straightforward calculation shows that the equation for the Fourier

coefficients ûk is the same as in the pseudospectral Galerkin approach. Thus

the two methods are numerically equivalent.

• Question — Show equivalence of pseudospectral Galerkin and collocation

approaches to a nonlinear PDE



Spectral Methods 98

NONLINEAR PDES —
ALIASING REMOVAL (I)

• “3/2 rule” — extend the spectrum, and therefore also the number of

collocation points, of the quantities involved in the products, so that the

aliasing errors arising in pseudospectral calculations are not present.

• Algorithm — consider two 2π–periodic functions

aN(x) =
N

∑
k=−N

âkeikx, bN(x) =
N

∑
k=−N

b̂keikx

Calculated in a naive way, the coefficient of the product w(x) = a(x)b(x) are

w̃k = ŵk +
N

∑
p,q=−N

p+q=k+M

âpb̂q +
N

∑
p,q=−N

p+q=k−M

âpb̂q,

where ŵk are the coefficients of the convolution sum that we want to obtain

(only)
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NONLINEAR PDES —
ALIASING REMOVAL (II)

1. Extend the spectra âk and b̂k to â′k and b̂′k according to

â′k =

{

âk if |k| ≤ N

0 if N < |k| ≤ N ′
, b̂′k =

{

b̂k if |k| ≤ N

0 if N < |k| ≤ N ′

The number N ′ will be determined later.

2. Calculate (via FFT) aN′ and bN′ in real space on the extended grid x′j = 2π j
N′ ,

j = 1, . . . ,N′

aN′ (x′j) =
N′

∑
k=−N′

â′keikx′j , bN′(x′j) =
N′

∑
k=−N′

b̂′keikx′j

3. Multiply aN′ (x′j) and bN′ (x′j): w′(x′j) = aN′ (x′j)bN′ (x′j), j = 1, . . . ,N ′

4. Calculate (via FFT) the Fourier coefficients of w′(x′j)

w̃′
k =

1
M′

M′

∑
j=1

w(x′j)e
−ikx′j , k = −N ′, . . . ,N ′, M′ = 2N ′ +1

Taking the latter quantity for k = −N, . . . ,N gives an expression for the

convolution sum free of aliasing errors



Spectral Methods 100

NONLINEAR PDES —
ALIASING REMOVAL (III)

• Making a suitable choice for N ′

w̃′
k = ŵk +

N′

∑
p,q=−N′

p+q=k+M′

â′pb̂′q +
N′

∑
p,q=−N′

p+q=k−M′

â′pb̂′q

= ŵk +
N

∑
p,q=−N

p+q=k+M′

âpb̂q +
N

∑
p,q=−N

p+q=k−M′

âpb̂q

because â′p, b̂
′
q = 0 for |p|, |q| > N

• The alias terms will vanish, when one of the frequencies p or q appearing in
each term of the sum is larger than N. Observe that in the first alias term
q = M′ + k− p = 2N′ +1+ k− p, therefore

min
|k|,|p|≤N

(q) = min
|k|,|p|≤N

(2N ′ +1+ k− p) = 2N ′ +1−2N > N

Hence 2N′ > 3N −1. One may take N ′ ≥ 3N/2 ( the “3/2 rule” )

• Analogous argument for the second aliasing error sum.
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HYBRID INTEGRATION SCHEMES FOR ODES
WITH BOTH LINEAR AND NONLINEAR TERMS)
• Consider a model ODE problem

y′ = r(y)+Ay

• One would like to use a higher–order ODE integrator with

– explicit treatment of nonlinear terms

– implicit treatment of linear terms (with high–order derivatives)

• Combining a three-step Runge–Kutta method with the Crank–Nicholson
method results in the following approach:
(

I −
hrk

2
A

)

yrk+1 = yrk +
hrk

2
Ayrk +hrkβrkr(yrk)+hrkζrkr(yrk−1), rk = 1,2,3

where

h1 =
8
15

∆t h2 =
2
15

∆t h3 =
1
3

∆t

β1 = 1 β2 =
25
8

β3 =
9
4

ζ1 = 0 ζ2 = −
17
8

ζ3 = −
5
4


