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METHOD OF WEIGHTED RESIDUALS (1)

e Spectral Methods belong to the broader category of Weighted Residual
Methods , for which approximations are defined in terms of series
expansions, such that some quantity ( residual , or error) is set to be zero in
some approximate sense

PART IV o In general, an approximation uy (x) to u(x) is constructed using a set of basis
functions ¢y (x), k=0,...,N (note that ¢(x) need not be orthogonal )

W) 2 T G, a<x<b

Spectral Methods G

e Residual for
— Problem of approximating a function u:

Rnu(X) =u—un
— Approximate solution to a differential equation Lu— f =0:

Ru(X)=2uny—f
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METHOD OF WEIGHTED RESIDUALS (1)

e Cancellation of the residual Ry in the following sense:

b — .
<RN,wi)W*:/a W, Ry G dx =0, i€ Iy,

where )i (x), i € Iy are the trial (test) functions

* Spectral Method is obtained by: METHOD OF WEIGHTED RESIDUALS (l11)
— selecting the basis functions ¢y to form an orthogonal system under the

weight w:
(di,0k)w = dik, i,keln and o Note that the residual Ry vanishes

— selecting the trial functions to coincide with the basis functions: — in the mean sense in the Galerkin approach
Yk =¢k, keln — at the points X in the collocation approach

with the weights w, = w ( Galerkin approach ), or
— selecting the trial functions as

wk:5(X—Xk)7 Xk € (avb)v

where xi are chosen in a non—arbitrary manner, and the weights are
w, =1 ( Collocation , “pseudo—spectral” approach)
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APPROXIMATION OF FUNCTIONS (I) —
GALERKIN METHOD

The residual
N

Ry(X) =u—uy :u_kZonq)k

Cancellation of the residual in the mean

N

b )
(RN,¢i)W:/a (uzakqak) iwdx—=0, i=0,...,N

k=0

Orthogonality of the basis / trial functions thus allows us to determine the
coefficients "y by evaluating the expressions

b
Ok:/ upwdx, k=0,...,N
a

Note that, for this problem, the Galerkin approach is equivalent to the Least
Squares Method .
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APPROXIMATION OF FUNCTIONS (1) —
COLLOCATION METHOD

The residual
N

Ru(X) = u—un :U—k;qu’k

Pointwise cancellation of the residual
N

%qu)k(xi) = U(Xi)', i=0,...,N

k=
Determination of the coefficients y thus requires solution of an algebraic
system. Existence and uniqueness of solutions requires that det{¢y(xi)} # 0
(condition on the choice of the collocation points x;

As will be shown later, for a judicious choice of the collocation points x; the
above system can be decoupled and therefore determination of W may be
reduced to evaluation of simple expressions

For this problem the collocation method thus coincides with an interpolation
technique based on the set {x;}
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APPROXIMATION OF PDESs (I) —
GALERKIN METHOD

e Consider a generic PDE problem
Lu—f=0 a<x<b
B_U=0_ X=a

BiU=04 X=b,

where £ is a linear, second—oder differential operator, and 3_ and B
represent appropriate boundary conditions (Dirichlet, Neumann, or Robin)

Reduce the problem to an equivalent homogeneous formulation via a
“lifting” technique, i.e., substitute u= "u+ v, where "uis an arbitrary
function satisfying the boundary conditions above and the new
(homogeneous) problem for v is

Lv—h=0 a<x<b
B_v=0 X=a
B,v=0 x=bh,
where h=f -~ U
The reason for this transformation is that the basis functions ¢y (usually)
satisfy homogeneous boundary conditions.
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APPROXIMATION OF PDES (I1) —
GALERKIN METHOD

e The residual
N

Rn(X) = vy —h, where vy = ZJ\?kq)k(x)
k=
satisfies (“by construction”) the boundary conditions
e Cancellation of the residual in the mean

(Ry; §i)w = (£vn —h,di)w, i=0,...,N

N

k;f/k(ﬂbk.,(bi)w: (h,¢i)w, i=0,....N,

where the scalar product (£ ¢k, dj)w can be accurately evaluated using
properties of the basis functions ¢; and (h, $;)w = hi

e An (N+1) x (N+1) algebraic system is obtained.
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APPROXIMATION OF PDEs (I11) —
COLLOCATION METHOD
e The residual (corresponding to the original inhomogeneous problem)

N

Ru(x) = cun —f, where uy = Gudw(X)
o

o Pointwise cancellation of the residual, including the boundary nodes:
LUN(Xi) = f(Xi)
B_Un (%) =0-
B UN(XN) = Oy,
which results in an (N+ 1) x (N4 1) algebraic system. Note that depending
on the properties of of the basis {§o,...,dn}, this system may be singular .
e Sometimes an alternative formulation is useful, where the nodal values
un(Xj) j =0,...,N, rather than the expansion coefficients Wk=0,...,Nare

unknown. The advantage is a convenient form of the expression for the
derivative

() < P
uy’ (%) = E di un(Xj)
N £ ij ]
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ORTHONORMAL SYSTEMS (1) —
CONSTRUCTION

e Let H be aseparable Hilbert space and 7 a compact Hermitian operator.
Then, there exists a sequence {An}nerny and {Wh }new such that

1. \neR,
2. the family {Wh }hcry forms a complete basis in H
3. TWh =AW, forallne N

e Systems of orthogonal functions are therefore related to spectra of certain
operators, hence the name SPECTRAL METHODS
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ORTHONORMAL SYSTEMS (Il) —
EXAMPLE

Let 7 : L(0,1) — L2(0,11) be defined for all f € L»(0,1) by 7 f = u, where
u is the solution of the Dirichlet problem

_ u// = f
{u(O) =u(m =0
Compactness of 7 follows from the Lax—Milgram lemma and compact

embeddedness of H1(0, 1) in L»(0, )
Eigenvalues and eigenvectors

)\k:% and W, = v2sin(kx) for k> 1

Thus, each function u € L, (0, 1) can be represented as
u(x) = v2 > GMk(X),

k>1
where = (UW)1, = 2 [Fu(x)sin(Kkx) dx

Uniform (pointwise) convergence is not guaranteed (only in L, sense)!
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ORTHONORMAL SYSTEMS (1) —
EXAMPLE

Let 7 : L(0,1) — L2(0,11) be defined for all f € L»(0,1) by 7 f = u, where
u is the solution of the Neumann problem

—u'+u="f
U(0)=u(m=0
Compactness of 7 follows from the Lax—-Milgram lemma and compact

embeddedness of H(0,11) in L»(0, 1)
Eigenvalues and eigenvectors

= ﬁlkz and Wo(x) =1, W = v/2cos(kx) for k> 1

Thus, each function u € L, (0, 1) can be represented as

u(x) =v2 k; Wk (%),

Ak

where §= (UW)L, = @ J3u(x) cos(kx) dx

Uniform (pointwise) convergence is not guaranteed (only in L, sense)!
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ORTHONORMAL SYSTEMS (1V) —
EXAMPLE

e Expansion in sine series good for functions vanishing on the boundaries

e Expansion in cosine series good for functions with first derivatives
vanishing on the boundaries

e Combining sine and cosine expansions we obtain the Fourier series
expansion with the basis functions (in Lo(—Tt, 1))

Wi(x) =€ for k>0

W form a Hilbert basis with better properties then sine or cosine series alone.

o Fourier series vs. Fourier transform — the Fourier transform of u(x)
vanishing outside the interval (—Tt, 1) takes the values /21ty at the points
k=0,1,2,...
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ORTHONORMAL SYSTEMS (V) —
POLYNOMIAL APPROXIMATION

e Weierstrass Approximation Theorem — To any function f(x) that is
continuous in [a,b] and to any real number € > 0 there corresponds a
polynomial P(x) such that [|P(x) — f(X)|[c(ap) <&, i-€. the set of
polynomials is dense in the Banach space C(a,b)

(C(a,b) is the Banach space with the norm || f||c(ab) = MaXyc[ap [ f(X)]

e Thus the power functions x¥, k=0,1,... represent a natural basis in C(a,b)

e Question — Is this set of basis functions useful?
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ORTHONORMAL SYSTEMS (VI) —
EXAMPLE

e Find the polynomial Py (of order N) that best approximates a function
f € La(a,b) [note that we will need the structure of a Hilbert space, hence
we go to L(a,b), but C(a,b) C Ly(a,b)], i.e.
b _ b
L1800~ Au0oax < [ 1700~ Ru(o]ax

a a

where
Pu(X) = 89 + a1x 48X + - - + anx"

e Using the formula Z’j\l:o (ej, &) = (f,&), j =0,...,N, where g = X<

b
a

N b . .
ék/ xk“dx:/ x £(x) dx
2. x

N pkti+l _ gkti+l

b .
: — [¥ixd
k;ak k+j+1 /a X 0qax

e The resulting algebraic problem is ill-conditioned , e.g. fora=0andb=1

1

[Alkj = Kol
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ORTHONORMAL SYSTEMS (VII) —
POLYNOMIAL APPROXIMATION

e Much better behaved approximation problems are obtained with the use of
orthogonal basis functions

e Such systems of orthogonal basis functions are derived by applying
Schmidt orthogonalization procedure to the system {1,x,...,xN}

e Various families of ORTHOGONAL POLYNOMIALS are obtained depending
on the choice of:
— the domain [a, b] over which the polynomials are defined, and

— the weight w characterizing the inner product (-, -) used for
orthogonalization
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ORTHONORMAL SYSTEMS (VIII) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on the interval [—1,1]
— Legendre polynomials (w=1)

o Jk+1 1 odd o,
RO) =/ 5 s g ¢~ D k=012

— Jacobi polynomials (w= (1—x)%(14x)P)

3 (0 = G(1—x) (1) 82

k
P g0 1P k=01.2,...,

where Cy is a very complicated constant
; __ 1
— Chebyshev polynomials (w= \/@)

Tn(x) = cos(karccos(x)), k=0,1,2,...,

Note that Chebyshev polynomials are obtained from Jacobi polynomials
forao=p=-1/2
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ORTHONORMAL SYSTEMS (I1X) —
ORTHOGONAL POLYNOMIALS

o Polynomials defined on the interval [0, +oo]
Laguerre polynomials (w=e™)

dk

1
Lk(x) = K & dxk

(€%, k=0,1,2,...
e Polynomials defined on the interval [—co, +-o0]

Hermite polynomials (w= 1)
(—1)k 2 ok

& > K=0,1,2,...

H) = G miz® a®
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ORTHONORMAL SYSTEMS (X) —
ORTHOGONAL POLYNOMIALS

e What is the relationship between orthogonal polynomials and
eigenfunctions of a compact operator Hermitian operator (cf. Theorem on
page 55)?

e Each of the aforementioned families of orthogonal polynomials forms the
set of eigenvectors for the following Sturm-Liouville problem

d
dx

(P00 ] + a9 + Aty =0
(@) + a2 (a) =0

bay(b) + b2y (b) =0

for appropriately selected domain [a, b] and coefficients p, g, r, a1, a, by and
by.
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FOURIER SERIES (I) — CALCULATION OF
FOURIER COEFFICIENTS
Truncated Fourier series: N
= (i g%
un (X) k=z—NUK

The series involves 2N + 1 complex coefficients of the form (wight w= 1):
PR T SEN—DS _
uk_ZT[/_nue dx, k=—N,...,N

The expansion is redundant for real-values u — the property of conjugate
symmetry Ty = W, which reduces the number of complex coefficients to
N + 1; furthermore, C( @) = O for real u, thus one has 2N +1 real
coefficients; in the real case one can work with positive frequencies only.

Equivalent real representation:

NGO =0+ 3. [accos(io +bysin(lg).
k=1

where ag = g, ax = 20( Q) and by = 20( Q).
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FOURIER SERIES (I1) — UNIFORM
CONVERGENCE

e Consider a function u that is continuous, periodic (with the period 217) and
differentiable; note the following two facts:
— The Fourier coefficients are always less than the average of u

|k\—‘— U dx| < M(u /|u ) dx
T[

— Ifv=u®
Uk

(k)™
e Then, using integration by parts, we have
it M i L a1
Gy = 2T{/ﬁﬂu(x)e dx= o [u(x) el B

e Repeating integration by parts p times

O =

1 m ek M (u(P)
G, — (—1)P_—_ (p) - O, | < —— 7
0= (-0 5 [ P00 S = 100 < T

Therefore, the more regular is the function u, the more rapidly its Fourier
coefficients tend to zero as |n| — oo
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FOURIER SERIES (I11) — UNIFORM
CONVERGENCE

o We have

R M(u//) ik //)
|G| < W Z\ue' | < o z

The latter series converges absolutely

Thus, if uis twice continuously differentiable and its first derivative is
continuous and periodic with period 211, then its Fourier series uy = Pyu
converges uniformly to u

Spectral convergence —if g€ CZ(—Tt ) then for all a > 0 there exists a
positive constant Cq such that |(n<| < n\“ , i.e., for a function with an infinite
number of smooth derivatives, the Fourier coefficients vanish faster than
algebraically
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FOURIER SERIES (V) — DISTRIBUTIONS
Let D’p(l) be the dual space of C7 (1), i.e., the space of periodic distributions
with period 2t [l = (—1t T)[. The duality between D,(1) and Cg(1) is
denoted by (,-), i.e. for f € Lp(l) and o€ C5 (1) we have (f,q) = (f,9)

Using W, = €** (note that W, € Cy (1)), the Fourier series for f € D},(I) can
be written as

fic = (W)
We have for any @ Cy(l)
(FLO=(1.YawW) =3 (FWa = (L.o= fin

KeZ KeZ keZ

This, given rapid decrease of @, the Fourier coefficient of f may increase
slowly — f € D (1) iff there exists g > 0 such that lim_.c, (Hf% =0

The Fourier series of a distribution f € D,(1) converges to f in Dy(I)
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FOURIER SERIES (V) —
PERIODIC SOBOLEV SPACES

Let H{)(I) be a periodic Sobolev space , i.e.,
HO(1) = {u: u® e La(l),a=0,...,r}
The space Cy (1) is dense in Hp(1)

The following two norms can be shown to be equivalent in Hp:

1/2
flullr = (1+k2)r0k|2]
2.

; 1/2
[ulllr = [Z C?’IU“”IZ]
a=0

Note that the first definition is naturally generalized for the case when r is non—integer!

The projection operator Py commutes with the derivative in the distribution
sense:
(Pyu)® = ; (ik) 0 = Pyu®

=N




Spectral Methods

FOURIER SERIES (VI) —
APPROXIMATION ERROR ESTIMATES IN Hy(I)

e Letr,se R with 0 < s<r; then we have:
lu—Puulls < (14+N2)°2 |Jull, for ue Hi(1)
Proof:

Ju=RulE= 5 L+ 0> < 1+N)*T 5 (14K |G
=N [K>N

< (L+N2)* " fulf?

e Thus, accuracy of the approximation Pyu is better when u is smoother; More
precisely, for u € H (1) the L leading order error is 0 (N~") which improves
when r increases.
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FOURIER SERIES (VII) —
APPROXIMATION ERROR ESTIMATES IN Lo (1)

First, a useful lemma (Sobolev inequality) —letueH Fl,(l), then there
exists a constant C such that

luli2, ¢, < Cllulolulla
Proof: Suppose u € C7(I); note the following facts
— g isthe average of u

— From the mean value theorem: 3xg € | such that g = u(xp)
Let v(x) = u(x) — g, then

St = vy ([ worey) ([worre) <onvvi

X0
()| < (0o +[v(x)| < |0o| +2m /2|2 V|42 < Cllulfg? luly%,
since V. =U', ||v|| <||ul| and | @| < ||u]|.
As Cy (1) is dense in H3(1), the inequality also holds for ue H3(1).
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FOURIER SERIES (VIII) —
APPROXIMATION ERROR ESTIMATES IN Lo (1)

e An estimate in the norm L« (1) follows immediately from the previous
lemma and estimates in the H3(1) norm
lu=PuulZ, ) <CL+N?)~2(1+N2) 2,
where u € Hy(1)
e Thusforr >1
1
lu—Pyulf, 4y =0(N2™)

o Uniform convergence for all ue Hé(l)
(Note that u need only to be continuous , therefore this result is stronger than
the one given on page 67)
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LAGRANGE INTERPOLATION (1)

In practice, for any arbitrary u € CB(I) it is not possible to calculate exactly
the Fourier coefficients T (need to evaluate quadratures numerically);
therefore, in general we do not know Pyu, i.e., the optimal projection on

Sy =span{g%, ... &Nx}

Can determine an interpolant v € Sy of u, such that v coincides with u at
2N +1 points {X; }jj<n defined by

21

ih lil< _
Xj = jh, |j| <N where h N1

For the interpolant we set
v =y ae
KN
where the coefficients ax can be determined by solving the algebraic system
(cf. page 51)
ac=u(x), [j[<N
=N
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LAGRANGE INTERPOLATION (11)
e The system can be rewritten as
Wia =u(x), [j| <N
=N

where W = & = 21 is the principal root of order (2N + 1) of unity (since

Wik = (eih)lk)
e The matrix [W]j = WK is unitary (i.e. WT W =1(2N+1))

Proof: Examine the expression

WTW =

— Ifk=1, then Wikw—Il =will) =
— Ifk 1, define =W, then

1

_- kil =
2N+1 whw

Ji[=N
whereM =2N+1,j=jif0O<j<Nandj =j+Mif —N < j <0, so that
witM = . Using the expression for the sum of a finite geometric series
completes the proof: (1—w) z\J\<N w =1-M=0

LAGRANGE INTERPOLATION (111)

e Consequently, the Fourier coefficients of the interpolant of uin Sy can be
calculated as follows:

1
2N+1

a = ; ZWIK where zj = u(x;)

[KI<N
The mapping

{z}jjen — {3 KN
is referred to as Discrete Fourier Transform (DFT)

Straightforward evaluation of the expression for ay (matrix—vector product)
would result in the computational cost 0 (N?). Algorithms known as Fast
Fourier Transforms (FFT) reduce this cost down to o (Nlog(N)) via a
suitable factorization of the matrix W7. See waw. f f t w. or g for one of the
best publicly available implementation of the FFT.
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LAGRANGE INTERPOLATION (1V)

Let Pc: Cg(l) — Sy be the mapping which associates with u its interpolant
ve Sy. Let (-,-)n be the following form on Cg(l):

1 J—
(UVNE = ; u(xj)v(x))
N+1 &y
By construction, the operator Pc satisfies:

(Reu)(xj) = u(xj), il <N

and therefore also
(u=Pcu,vn)N =0, YW € SN

By the definition of Py we have
(u—Pnu,w) =0, Yvy € Sy

Thus, Pc can be obtained by replacing the scalar product (-, -) with the
“discrete scalar product” (-,-)n

LAGRANGE INTERPOLATION (V)

e The two scalar products coincide on Sy
(UN,VN) = (UN VNN, YUNG VN € Sy

e Proof — examine the numerical integration formula

21'[/ fix g2N+1 > f09)

[iI<N

forf e Sy

. 1 k=0
/ kg Wik —
2N 1 iz ; N +1 \JéN 0 otherwise
Thus for uniform distribution of xj, the trapezoidal formula is exact for
ue N
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LAGRANGE INTERPOLATION (VI)

o Relation between Fourier coefficients of a function and Fourier coefficients
of its interpolant (W (x) = &) LAGRANGE INTERPOLATION (VII)

N 1 m
U = E['[HUWK dx

A= g Y UGG

lil<N i) = V(X Oy > g — > <0k+ > l]klM) gk
< =N EANT)

=5 where M — 2N + 1 e A Very Important Corollary concerning Discretization — two trigonometric
= k-+IM = . . . . i i .
1€z " functions with different frequencies, gkix and kX are equal on collocation

e Forue CS(I) we have the relation

Proof — Consider the set of basis functions (in L »(1)) Ux = €. We have: points Xj, j < N'when kz —k; =1(2N+1),1 =0,+1,... ._Iherefore, the
H H 1K1 X
L L _ 1 k=n(modM) same set of values at the collocation points may represent €% as well as
U0 witk-n)
i1

- S U()Un(X) = = kX This phenomenon is referr ALIASING
2N+1\i|§N <65)n) 2N+1 0 otherwise e s phenomenon is referred to as

(Uk,Un)n
o Note, however, that the modes appearing in the alias term correspond to

Since Pcu = 5 ij<n @jW;, we infer from (Pcu, W )n = (u, W) that
2= & ( ) ( ) frequencies larger than the cut—off frequency N.

a = (Reu,WN = (UWk)N = ( EZUnWka> Vo IEZGHIM
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LAGRANGE INTERPOLATION (1X)

LAGRANGE INTERPOLATION (V| | |) — Until now, we defined the Discrete Fourier Transform for an odd number
ERROR ESTIMATES IN HJ(1) (2N+1) of grid points

. . . FFT algorithms generally require an even number of grid points
e Supposes<r,r > % are given, then there exists a constant C such that if g g yreq gnap

ue HL(1), we have We can define the discrete transform for an even number of grid points by
3 o st constructing the interpolant in the space Sy for which we have
lu=Peulls < CL+N) = fule dim(Sy) = 2N. To do this we choose:

Outline of the proof:

Note that Pc leaves Sy invariant, therefore PcPy = Py and we may thus write -N+1I<j<N

Uu—PReu=u—Pyu+PRe(Py—1u

Setting w = (I — Py)u and using the “triangle inequality” we obtain All results presented before can be established in the case with 2N grid

points with only minor modifications
[lu—Peulls = [lu—Pyulls + [[Pewls

However, now the N-th Fourier mode i does not have its complex
conjugate! This coefficient is usually set to zero (% = 0) to avoid an
— Need to estimate ||Pcw||s — straightforward, but tedious ... uncompensated imaginary contribution resulting from differentiation

— The term |ju— Pyu||s is upper—bounded using theorem from page 70

odd or even collocation depending on whether M =2N+1 or M = 2N




