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PART IV

Spectral Methods
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METHOD OF WEIGHTED RESIDUALS (I)

• Spectral Methods belong to the broader category of Weighted Residual

Methods , for which approximations are defined in terms of series

expansions, such that some quantity ( residual , or error) is set to be zero in

some approximate sense

• In general, an approximation uN(x) to u(x) is constructed using a set of basis
functions ϕk(x), k = 0, . . . ,N (note that ϕk(x) need not be orthogonal )

uN(x) , ∑
k∈IN

ûkϕk(x), a ≤ x ≤ b

• Residual for

– Problem of approximating a function u:

RN(x) = u−uN

– Approximate solution to a differential equation Lu− f = 0:

RN(x) = LuN − f
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METHOD OF WEIGHTED RESIDUALS (II)
• Cancellation of the residual RN in the following sense:

(RN ,ψi)w∗ =
Z b

a
w∗ RN ψ̄i dx = 0, i ∈ IN ,

where ψi(x), i ∈ IN are the trial (test) functions

• Spectral Method is obtained by:

– selecting the basis functions ϕk to form an orthogonal system under the
weight w:

(ϕi,ϕk)w = δik, i,k ∈ IN and

– selecting the trial functions to coincide with the basis functions:

ψk = ϕk, k ∈ IN

with the weights w∗ = w ( Galerkin approach ), or

– selecting the trial functions as

ψk = δ(x− xk), xk ∈ (a,b),

where xk are chosen in a non–arbitrary manner, and the weights are

w∗ = 1 ( Collocation , “pseudo–spectral” approach)
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METHOD OF WEIGHTED RESIDUALS (III)

• Note that the residual RN vanishes

– in the mean sense in the Galerkin approach

– at the points xk in the collocation approach
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APPROXIMATION OF FUNCTIONS (I) —
GALERKIN METHOD

• The residual

RN(x) = u−uN = u−
N

∑
k=0

ûkϕk

• Cancellation of the residual in the mean

(RN ,ϕi)w =
Z b

a

(

u−
N

∑
k=0

ûkϕk

)

ϕ̄i wdx = 0, i = 0, . . . ,N

• Orthogonality of the basis / trial functions thus allows us to determine the
coefficients ûk by evaluating the expressions

ûk =
Z b

a
u ϕ̄k wdx, k = 0, . . . ,N

• Note that, for this problem, the Galerkin approach is equivalent to the Least

Squares Method .
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APPROXIMATION OF FUNCTIONS (II) —
COLLOCATION METHOD

• The residual

RN(x) = u−uN = u−
N

∑
k=0

ûkϕk

• Pointwise cancellation of the residual
N

∑
k=0

ûkϕk(xi) = u(xi), i = 0, . . . ,N

Determination of the coefficients ûk thus requires solution of an algebraic

system. Existence and uniqueness of solutions requires that det{ϕk(xi)} 6= 0

(condition on the choice of the collocation points x j

• As will be shown later, for a judicious choice of the collocation points x j the

above system can be decoupled and therefore determination of ûk may be

reduced to evaluation of simple expressions

• For this problem the collocation method thus coincides with an interpolation

technique based on the set {x j}
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APPROXIMATION OF PDES (I) —
GALERKIN METHOD

• Consider a generic PDE problem














Lu− f = 0 a < x < b

B−u = g− x = a

B+u = g+ x = b,

where L is a linear, second–oder differential operator, and B− and B+

represent appropriate boundary conditions (Dirichlet, Neumann, or Robin)

• Reduce the problem to an equivalent homogeneous formulation via a
“lifting” technique, i.e., substitute u = ū+ v , where ū is an arbitrary
function satisfying the boundary conditions above and the new
(homogeneous) problem for v is















Lv−h = 0 a < x < b

B−v = 0 x = a

B+v = 0 x = b,

where h = f −L ū
• The reason for this transformation is that the basis functions ϕk (usually)

satisfy homogeneous boundary conditions.
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APPROXIMATION OF PDES (II) —
GALERKIN METHOD

• The residual

RN(x) = LvN −h, where vN =
N

∑
k=0

v̂kϕk(x)

satisfies (“by construction”) the boundary conditions

• Cancellation of the residual in the mean

(RN ,ϕi)w = (LvN −h,ϕi)w, i = 0, . . . ,N

Thus
N

∑
k=0

v̂k (Lϕk,ϕi)w = (h,ϕi)w, i = 0, . . . ,N,

where the scalar product (Lϕk,ϕi)w can be accurately evaluated using

properties of the basis functions ϕi and (h,ϕi)w = ĥi

• An (N +1)× (N +1) algebraic system is obtained.
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APPROXIMATION OF PDES (III) —
COLLOCATION METHOD

• The residual (corresponding to the original inhomogeneous problem)

RN(x) = LuN − f , where uN =
N

∑
k=0

ûkϕk(x)

• Pointwise cancellation of the residual, including the boundary nodes:














LuN (xi) = f (xi) i = 1, . . . ,N −1

B−uN(x0) = g−

B+uN (xN) = g+,

which results in an (N +1)× (N +1) algebraic system. Note that depending

on the properties of of the basis {ϕ0, . . . ,ϕN}, this system may be singular .

• Sometimes an alternative formulation is useful, where the nodal values
uN(x j) j = 0, . . . ,N, rather than the expansion coefficients ûk k = 0, . . . ,N are
unknown. The advantage is a convenient form of the expression for the
derivative

u(p)
N (xi) =

N

∑
j=0

d(p)
i j uN(x j)
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ORTHONORMAL SYSTEMS (I) —
CONSTRUCTION

• Let H be a separable Hilbert space and T a compact Hermitian operator.

Then, there exists a sequence {λn}n∈N and {Wn}n∈N such that

1. λn ∈ R,

2. the family {Wn}n∈N forms a complete basis in H

3. T Wn = λnWn for all n ∈ N

• Systems of orthogonal functions are therefore related to spectra of certain

operators, hence the name SPECTRAL METHODS
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ORTHONORMAL SYSTEMS (II) —
EXAMPLE

• Let T : L2(0,π) → L2(0,π) be defined for all f ∈ L2(0,π) by T f = u, where
u is the solution of the Dirichlet problem

{ −u′′ = f

u(0) = u(π) = 0

Compactness of T follows from the Lax–Milgram lemma and compact

embeddedness of H1(0,π) in L2(0,π)

• Eigenvalues and eigenvectors

λk =
1
k2 and Wk =

√
2sin(kx) for k ≥ 1

• Thus, each function u ∈ L2(0,π) can be represented as

u(x) =
√

2 ∑
k≥1

ûkWk(x),

where ûk = (u,Wk)L2 =
√

2
π

R π
0 u(x)sin(kx)dx

• Uniform (pointwise) convergence is not guaranteed (only in L2 sense)!
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ORTHONORMAL SYSTEMS (III) —
EXAMPLE

• Let T : L2(0,π) → L2(0,π) be defined for all f ∈ L2(0,π) by T f = u, where
u is the solution of the Neumann problem

{ −u′′ +u = f

u′(0) = u′(π) = 0

Compactness of T follows from the Lax–Milgram lemma and compact

embeddedness of H1(0,π) in L2(0,π)

• Eigenvalues and eigenvectors

λk =
1

1+ k2 and W0(x) = 1, Wk =
√

2cos(kx) for k > 1

• Thus, each function u ∈ L2(0,π) can be represented as

u(x) =
√

2 ∑
k≥0

ûkWk(x),

where ûk = (u,Wk)L2 =
√

2
π

R π
0 u(x)cos(kx)dx

• Uniform (pointwise) convergence is not guaranteed (only in L2 sense)!
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ORTHONORMAL SYSTEMS (IV) —
EXAMPLE

• Expansion in sine series good for functions vanishing on the boundaries

• Expansion in cosine series good for functions with first derivatives

vanishing on the boundaries

• Combining sine and cosine expansions we obtain the Fourier series
expansion with the basis functions (in L2(−π,π))

Wk(x) = eikx, for k ≥ 0

Wk form a Hilbert basis with better properties then sine or cosine series alone.

• Fourier series vs. Fourier transform — the Fourier transform of u(x)

vanishing outside the interval (−π,π) takes the values
√

2π ûk at the points

k = 0,1,2, . . .
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ORTHONORMAL SYSTEMS (V) —
POLYNOMIAL APPROXIMATION

• Weierstrass Approximation Theorem — To any function f (x) that is

continuous in [a,b] and to any real number ε > 0 there corresponds a

polynomial P(x) such that ‖P(x)− f (x)‖C(a,b) < ε, i.e. the set of

polynomials is dense in the Banach space C(a,b)

(C(a,b) is the Banach space with the norm ‖ f‖C(a,b) = maxx∈[a,b] | f (x)|

• Thus the power functions xk, k = 0,1, . . . represent a natural basis in C(a,b)

• Question — Is this set of basis functions useful?
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ORTHONORMAL SYSTEMS (VI) —
EXAMPLE

• Find the polynomial P̄N (of order N) that best approximates a function
f ∈ L2(a,b) [note that we will need the structure of a Hilbert space, hence
we go to L2(a,b), but C(a,b) ⊂ L2(a,b)], i.e.

Z b

a
[ f (x)− P̄N(x)]2 dx ≤

Z b

a
[ f (x)−PN(x)]2 dx

where
P̄N(x) = ā0 + ā1x+ ā2x2 + · · ·+ āN xN

• Using the formula ∑N
j=0 āj(e j,ek) = ( f ,ek), j = 0, . . . ,N, where ek = xk

N

∑
k=0

āk

Z b

a
xk+ j dx =

Z b

a
x j f (x)dx

N

∑
k=0

āk
bk+ j+1 −ak+ j+1

k + j +1
=

Z b

a
x j f (x)dx

• The resulting algebraic problem is ill–conditioned , e.g. for a = 0 and b = 1

[A]k j =
1

k + j +1
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ORTHONORMAL SYSTEMS (VII) —
POLYNOMIAL APPROXIMATION

• Much better behaved approximation problems are obtained with the use of

orthogonal basis functions

• Such systems of orthogonal basis functions are derived by applying

Schmidt orthogonalization procedure to the system {1,x, . . . ,xN}

• Various families of ORTHOGONAL POLYNOMIALS are obtained depending

on the choice of:

– the domain [a,b] over which the polynomials are defined, and

– the weight w characterizing the inner product (·, ·) used for

orthogonalization
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ORTHONORMAL SYSTEMS (VIII) —
ORTHOGONAL POLYNOMIALS

• Polynomials defined on the interval [−1,1]

– Legendre polynomials (w = 1)

Pk(x) =

√

2k +1
2

1
2k k!

dk

dxk (x2 −1)k, k = 0,1,2, . . .

– Jacobi polynomials (w = (1− x)α(1+ x)β)

J(α,β)
k (x) = Ck(1− x)−α(1+ x)−β dk

dxk [(1− x)α+k(1+ x)β+k] k = 0,1,2, . . . ,

where Ck is a very complicated constant

– Chebyshev polynomials (w = 1√
1−x2 )

Tn(x) = cos(k arccos(x)), k = 0,1,2, . . . ,

Note that Chebyshev polynomials are obtained from Jacobi polynomials

for α = β = −1/2
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ORTHONORMAL SYSTEMS (IX) —
ORTHOGONAL POLYNOMIALS

• Polynomials defined on the interval [0,+∞]
Laguerre polynomials (w = e−x)

Lk(x) =
1
k!

ex dk

dxk (e−xxk), k = 0,1,2, . . .

• Polynomials defined on the interval [−∞,+∞]
Hermite polynomials (w = 1)

Hk(x) =
(−1)k

(2k k!
√

π)1/2
ex2 dk

dxk e−x2
, k = 0,1,2, . . .
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ORTHONORMAL SYSTEMS (X) —
ORTHOGONAL POLYNOMIALS

• What is the relationship between orthogonal polynomials and

eigenfunctions of a compact operator Hermitian operator (cf. Theorem on

page 55)?

• Each of the aforementioned families of orthogonal polynomials forms the
set of eigenvectors for the following Sturm–Liouville problem

d
dx

[

p(x)
dy
dx

]

+[q(x)+λr(x)]y = 0

a1y(a)+a2y′(a) = 0

b1y(b)+b2y′(b) = 0

for appropriately selected domain [a,b] and coefficients p, q, r, a1, a2, b1 and

b2.
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FOURIER SERIES (I) — CALCULATION OF
FOURIER COEFFICIENTS

• Truncated Fourier series:

uN(x) =
N

∑
k=−N

ûkeikx

• The series involves 2N +1 complex coefficients of the form (wight w ≡ 1):

ûk =
1

2π

Z π

−π
ue−ikx dx, k = −N, . . . ,N

• The expansion is redundant for real–values u — the property of conjugate

symmetry û−k = ¯̂uk , which reduces the number of complex coefficients to

N +1; furthermore, ℑ( û0) ≡ 0 for real u, thus one has 2N +1 real

coefficients; in the real case one can work with positive frequencies only.

• Equivalent real representation:

uN(x) = a0 +
N

∑
k=1

[ak cos(kx)+bk sin(kx)] ,

where a0 = û0, ak = 2ℜ( ûk) and bk = 2ℑ( ûk).
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FOURIER SERIES (II) — UNIFORM
CONVERGENCE

• Consider a function u that is continuous, periodic (with the period 2π) and

differentiable; note the following two facts:

– The Fourier coefficients are always less than the average of u

|ûk| =
∣

∣

∣

∣

1
2π

Z π

−π
u(x)eikx dx

∣

∣

∣

∣

≤ M(u) ,
1

2π

Z π

−π
|u(x)|dx

– If v = u(α)

ûk =
v̂k

(ik)α

• Then, using integration by parts, we have

ûk =
1

2π

Z π

−π
u(x)e−ikx dx =

1
2π

[

u(x)
e−ikx

−ik

]π

−π
− 1

2π

Z π

−π
u′(x)

e−ikx

−ik
dx

• Repeating integration by parts p times

ûk = (−1)p 1
2π

Z π

−π
u(p)(x)

e−ikx

(−ik)p dx =⇒ |ûk| ≤
M(u(p))

|k|p

Therefore, the more regular is the function u, the more rapidly its Fourier

coefficients tend to zero as |n| → ∞
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FOURIER SERIES (III) — UNIFORM
CONVERGENCE

• We have

|ûk| ≤
M(u′′)
|k|2 =⇒ ∑

k∈Z

|ûkeikx| ≤ û0 ∑
n6=0

M(u′′)
n2

The latter series converges absolutely

• Thus, if u is twice continuously differentiable and its first derivative is

continuous and periodic with period 2π, then its Fourier series uN = PNu

converges uniformly to u

• Spectral convergence – if φ ∈C∞
p (−π,π), then for all α > 0 there exists a

positive constant Cα such that |φ̂k| ≤ Cα
|n|α , i.e., for a function with an infinite

number of smooth derivatives, the Fourier coefficients vanish faster than

algebraically
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FOURIER SERIES (IV) — DISTRIBUTIONS
• Let D′

p(I) be the dual space of C∞
p (I), i.e., the space of periodic distributions

with period 2π [I = (−π,π)[. The duality between D′
p(I) and C∞

p (I) is

denoted by 〈·, ·〉, i.e. for f ∈ L2(I) and φ ∈C∞
p (I) we have 〈 f ,φ〉 = ( f ,φ)

• Using Wk = eikx (note that Wk ∈C∞
p (I)), the Fourier series for f ∈ D′

p(I) can
be written as

f̂k = 〈 f ,Wk〉
We have for any φ ∈C∞

p (I)

〈 f ,φ〉 = 〈 f , ∑
k∈Z

φ̂kWk〉 = ∑
k∈Z

〈 f ,Wk〉 ¯̂φk =⇒ 〈 f ,φ〉 = ∑
k∈Z

f̂k
¯̂φk

• This, given rapid decrease of φ̂k, the Fourier coefficient of f may increase

slowly — f ∈ D ′
p(I) iff there exists q > 0 such that lim|k|→∞

f̂k
(1+k2)q = 0

• The Fourier series of a distribution f ∈ D′
p(I) converges to f in D′

p(I)
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FOURIER SERIES (V) —
PERIODIC SOBOLEV SPACES

• Let Hr
p(I) be a periodic Sobolev space , i.e.,

Hr
p(I) = {u : u(α) ∈ L2(I),α = 0, . . . ,r}

The space C∞
p (I) is dense in Hr

p(I)

• The following two norms can be shown to be equivalent in Hr
p:

‖u‖r =

[

∑
k∈Z

(1+ k2)r|ûk|2
]1/2

|‖u‖|r =

[

r

∑
α=0

Cα
r ‖u(α)‖2

]1/2

Note that the first definition is naturally generalized for the case when r is non–integer!

• The projection operator PN commutes with the derivative in the distribution
sense:

(PN u)(α) = ∑
|k|≤N

(ik)αûkWk = PN u(α)
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FOURIER SERIES (VI) —
APPROXIMATION ERROR ESTIMATES IN Hs

p(I)

• Let r,s ∈ R with 0 ≤ s ≤ r; then we have:

‖u−PN u‖s ≤ (1+N2)
s−r

2 ‖u‖r, for u ∈ Hr
p(I)

Proof:

‖u−PN u‖2
s = ∑

|k|>N

(1+ k2)s−r+r |ûk|2 ≤ (1+N2)s−r ∑
|k|>N

(1+ k2)r|ûk|2

≤ (1+N2)s−r‖u‖2
r

• Thus, accuracy of the approximation PNu is better when u is smoother; More

precisely, for u ∈ Hr
p(I) the L2 leading order error is O(N−r) which improves

when r increases.
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FOURIER SERIES (VII) —
APPROXIMATION ERROR ESTIMATES IN L∞(I)

• First, a useful lemma (Sobolev inequality) — let u ∈ H 1
p(I), then there

exists a constant C such that

‖u‖2
L∞(I) ≤C‖u‖0 ‖u‖1

Proof: Suppose u ∈C∞
p (I); note the following facts

– û0 is the average of u

– From the mean value theorem: ∃x0 ∈ I such that û0 = u(x0)

Let v(x) = u(x)− û0, then

1
2
|v(x)|2 =

Z x

x0

v(y)v′(y)dy ≤
(

Z x

x0

|v(y)|2 dy

)1/2(Z x

x0

|v′(y)|2 dy

)1/2

≤ 2π‖v‖‖v′‖

|u(x)| ≤ |û0|+ |v(x)| ≤ |û0|+2π1/2‖v‖1/2 ‖v′‖1/2 ≤C‖u‖1/2
0 ‖u‖1/2

1 ,

since v′ = u′, ‖v‖ ≤ ‖u‖ and | û0| ≤ ‖u‖.

As C∞
p (I) is dense in H1

p(I), the inequality also holds for u ∈ H1
p(I).
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FOURIER SERIES (VIII) —
APPROXIMATION ERROR ESTIMATES IN L∞(I)

• An estimate in the norm L∞(I) follows immediately from the previous
lemma and estimates in the Hs

p(I) norm

‖u−PN u‖2
L∞(I) ≤C(1+N2)−

r
2 (1+N2)

1−r
2 ,

where u ∈ Hr
p(I)

• Thus for r ≥ 1
‖u−PN u‖2

L∞(I) = O(N
1
2 −r)

• Uniform convergence for all u ∈ H1
p(I)

(Note that u need only to be continuous , therefore this result is stronger than

the one given on page 67)
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LAGRANGE INTERPOLATION (I)

• In practice, for any arbitrary u ∈C0
p(I) it is not possible to calculate exactly

the Fourier coefficients ûk (need to evaluate quadratures numerically);

therefore, in general we do not know PNu, i.e., the optimal projection on

SN = span{ei0k, . . . ,eiNx}
• Can determine an interpolant v ∈ SN of u, such that v coincides with u at

2N +1 points {x j}| j|≤N defined by

x j = jh, | j| ≤ N where h =
2π

2N +1

• For the interpolant we set
v(x) = ∑

|k|≤N

akeikx

where the coefficients ak can be determined by solving the algebraic system
(cf. page 51)

∑
|k|≤N

eikx j ak = u(x j), | j| ≤ N
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LAGRANGE INTERPOLATION (II)
• The system can be rewritten as

∑
|k|≤N

W jk ak = u(x j), | j| ≤ N

where W = eih = e
2iπ

2N+1 is the principal root of order (2N +1) of unity (since

W jk =
(

eih
) jk

)

• The matrix [W] jk = W jk is unitary (i.e. W
T

W = I(2N +1))
Proof: Examine the expression

WT W = I =⇒ 1
2N +1 ∑

| j|≤N

W jkW− jl = δkl

– If k = l, then W jkW− jl = W j(k−l) = W 0 = 1

– If k 6= l, define ω = Wk−l , then

1
2N +1 ∑

| j|≤N

W jkW− jl =
1

2N +1 ∑
| j|≤N

ω j =
1
M

M−1

∑
j′=0

ω j′

where M = 2N +1, j′ = j if 0 ≤ j ≤ N and j′ = j +M if −N ≤ j < 0, so that
ω j+M = ω j . Using the expression for the sum of a finite geometric series
completes the proof: (1−ω)∑M−1

| j|≤N ω j′ = 1−ωM = 0
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LAGRANGE INTERPOLATION (III)

• Consequently, the Fourier coefficients of the interpolant of u in SN can be
calculated as follows:

ak =
1

2N +1 ∑
|k|≤N

z jW
− jk, where z j = u(x j)

• The mapping
{z j}| j|≤N −→ {zk}|k|≤N

is referred to as Discrete Fourier Transform (DFT)

• Straightforward evaluation of the expression for ak (matrix–vector product)

would result in the computational cost O(N2). Algorithms known as Fast

Fourier Transforms (FFT) reduce this cost down to O(N log(N)) via a

suitable factorization of the matrix W
T . See www.fftw.org for one of the

best publicly available implementation of the FFT.
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LAGRANGE INTERPOLATION (IV)

• Let PC : C0
p(I) → SN be the mapping which associates with u its interpolant

v ∈ SN . Let (·, ·)N be the following form on C0
p(I):

(u,v)N ,
1

2N +1 ∑
| j|≤N

u(x j)v(x j)

• By construction, the operator PC satisfies:

(PCu)(x j) = u(x j), | j| ≤ N

and therefore also
(u−PCu,vN)N = 0, ∀vN ∈ SN

• By the definition of PN we have

(u−PNu,vN) = 0, ∀vN ∈ SN

• Thus, PC can be obtained by replacing the scalar product (·, ·) with the

“discrete scalar product” (·, ·)N
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LAGRANGE INTERPOLATION (V)

• The two scalar products coincide on SN

(uN ,vN) = (uN ,vN)N , ∀uN ,vN ∈ SN

• Proof — examine the numerical integration formula

1
2π

Z π

−π
f (x)dx ∼= 1

2N +1 ∑
| j|≤N

f (x j)

for f ∈ SN

1
2π

Z π

−π
eikx dx =

1
2N +1 ∑

| j|≤N

eikx j =
1

2N +1 ∑
| j|≤N

W jk =

{

1 k = 0

0 otherwise

Thus for uniform distribution of x j, the trapezoidal formula is exact for

u ∈ SN
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LAGRANGE INTERPOLATION (VI)
• Relation between Fourier coefficients of a function and Fourier coefficients

of its interpolant (Wk(x) = eikx)

ûk =
1

2π

Z π

−π
uW k dx

ak =
1

2N +1 ∑
| j|≤N

u(x j)Wk(x j)

• For u ∈C0
p(I) we have the relation

ak = ∑
l∈Z

ûk+lM , where M = 2N +1

Proof — Consider the set of basis functions (in L 2(I)) Uk = eikx. We have:

(Uk,Un)N =
1

2N +1 ∑
| j|≤N

Uk(x j)Un(x j) =
1

2N +1 ∑
| j|≤N

W j(k−n) =

{

1 k = n (mod M)

0 otherwise

Since PCu = ∑| j|≤N a jWj , we infer from (PCu,Wk)N = (u,Wk)N that

ak = (PCu,Wk)N = (u,Wk)N =

(

∑
n∈Z

ûnWn,Wk

)

N
= ∑

l∈Z

ûk+lM
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LAGRANGE INTERPOLATION (VII)

• Thus

u(x j) = v(x j) =
∞

∑
k=−∞

ûkeikx j = ∑
|k|≤N

akeikx j = ∑
|k|≤N

(

ûk + ∑
l∈Z�{0}

ûk+lM

)

eikx j

• A Very Important Corollary concerning Discretization — two trigonometric

functions with different frequencies, eik1x and eik2x, are equal on collocation

points x j, j ≤ N when k2 − k1 = l(2N +1), l = 0,±1, . . . . Therefore, the

same set of values at the collocation points may represent eik1x as well as

eik2x. This phenomenon is referred to as ALIASING

• Note, however, that the modes appearing in the alias term correspond to

frequencies larger than the cut–off frequency N.
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LAGRANGE INTERPOLATION (VIII) —
ERROR ESTIMATES IN Hs

p(I)
• Suppose s ≤ r, r > 1

2 are given, then there exists a constant C such that if
u ∈ Hr

p(I), we have

‖u−PCu‖s ≤C(1+N2)
s−r

2 ‖u‖r

Outline of the proof:
Note that PC leaves SN invariant, therefore PCPN = PN and we may thus write

u−PCu = u−PN u+PC(PN − I)u

Setting w = (I −PN)u and using the “triangle inequality” we obtain

‖u−PCu‖s = ‖u−PN u‖s +‖PCw‖s

– The term ‖u−PNu‖s is upper–bounded using theorem from page 70

– Need to estimate ‖PCw‖s — straightforward, but tedious ...
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LAGRANGE INTERPOLATION (IX)
• Until now, we defined the Discrete Fourier Transform for an odd number

(2N +1) of grid points

• FFT algorithms generally require an even number of grid points

• We can define the discrete transform for an even number of grid points by
constructing the interpolant in the space S̃N for which we have
dim(S̃N) = 2N. To do this we choose:

x̃j = jh̃, −N +1 ≤ j ≤ N

h̃ =
π
N

• All results presented before can be established in the case with 2N grid

points with only minor modifications

• However, now the N-th Fourier mode ûN does not have its complex

conjugate! This coefficient is usually set to zero ( ûN = 0) to avoid an

uncompensated imaginary contribution resulting from differentiation

• odd or even collocation depending on whether M = 2N +1 or M = 2N


