Numerical Methods for ODEs

PART |1

Review of numerical methods for
Ordinary Differential Equations

Numerical Methods for ODEs

BOUNDARY VALUE PROBLEMS (I)
e Solving a two—point boundary value problem
d?y
dx2
y(0) =y(2m =0

=g for x € (0,2m)

e Finite—difference approximation:
— Second-order Central Difference formula for the interior nodes:

ﬁﬁ;%iﬁi:mmu:LmN
where h= &5 and xj = jh

- Endpoint nodes: )
Yo=0 =y2—2y1=h"gy

Yn+1 = 0= —2yn +Yn-1 = h?On

— Tridiagonal algebraic system
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BOUNDARY VALUE PROBLEMS (I1)
e Solving a two-point boundary value problem

d?y

o =9 for x € (0,2m)

dy
w0 =
o Finite—difference approximation:
— Second-order Central Difference formula for the interior nodes:
Yi+1—2Yj +Yj-1

h2
— First—order Forward/Backward Difference formulae to re-express
endpoint values: Vi—Yo

h
YN+1—YN
h

First—order only — degraded accuracy!

=gjforj=1,...,N

=0 = Yo=W1

=0 = YN+1 = YN

— Tridiagonal algebraic system — Where is the problem?
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BOUNDARY VALUE PROBLEMS (111)

e In order to retain second-order accuracy in the approximation of the
Neumann problem need to use higher-order formulae at endpoints, e.g.

)/ 7 +4y1 —3Yo
0~ 2h

1
=0= YYo= §(*y2+4y1)

e The first row thus becomes
2, 2. _ h2
3y2 3y1 =n"01

Second-order accuracy recovered!
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BOUNDARY VALUE PROBLEMS (1V)

Compact Stencils — stencils based on three grid points only:
{Xj+1,Xj,Xj—1} at the j —thnode

Is is possible to obtain higher (then second) order of accuracy on compact
stencils? — YES!

Consider the central difference approximation to the equation %‘z’ =g BOUNDARY VALUE PROBLEMS (V)

Visr—2Yj+Yj-1 2 iy

—\ 4:-
YYist Ty 4ot =g

e Compact Finite Difference Schemes — drawbacks:

Re-express the error term *l‘—;y(jw) using the equation in question: — need to be tailored to the specific equation solved
o _ W, W Q20101 — can get fairly complicated for more complex equations
]

A n ) 4+ o(h*y
“RITn h 129

h2
12

Inserting into the original finite—difference equation:

Yi+1—2Yj +Yj-1 —g+ gj+1—20j +0j-1
h? ! 12

Slight modification of the RHS — fourth—order accuracy!!!

+o(hh
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INITIAL VALUE PROBLEMS — INITIAL VALUE PROBLEMS —

GENERAL REMARKS CHARACTERIZATION OF INTEGRATION
METHODS

Consider the following Cauchy problem :

%’ = f(y,t) with y(to) = e ACCURACY — unlike in the Boundary Value Problems, there is no terminal
_ ) ) _ condition and approximation errors may accumulate in time; consequently, a
The independent variable t is usually referred to as time . relevant characterization of accuracy is provided by the global error

Equations with higher—order derivatives can be reduced to systems of (global error) = (local error) x (# of time steps),

first—order equations
rather than the local error .

Generalizations to systems of ODEs straightforward o
STABILITY — unlike in the Boundary Value Problems, where boundedness

When the RHS function doesn’t depend ony, i.e., f(y,t) = f(t), of the solution at final time is enforced via a suitable terminal condition , in
solution obtained via quadrature Initial Value Problems there is a priori no guarantee that the solution will

Assume uniform time-steps ( h is constant ) remain bounded.
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INITIAL VALUE PROBLEMS —
MODEL PROBLEM
e Stability of various numerical schemes is usually analyzed by applying these
schemes to the following linear model:

d . .
d%/ = Ay = (Ar +iAi)y with y(to) = Yo,

which is stable when A\, <=0.

i 22 3h3
Exact solution: y(t) = yoe = <1+)\h+ % + % +) Yo

Motivation — consider the following advection—diffusion PDE:

@ +C@ _a@ =0
ot Tox ox2

Taking Fourier transform yields (k is the wavenumber):

duk

i +cik +ak’l, =0

where o
— the real term ak? (G represents diffusion

— the imaginary term cikdy represents advection
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (1)

e Consider a Taylor series expansion

h2
Y(tn+1) = Y(tn) +hy (ta) + ?yl(tn) +.--
Using the ODE we obtain

_dy
Y =&
,_dy _df _
)/ _E_ at —ft+ffy
o Neglecting terms proportional to second and higher powers of h yields the
Explicit Euler Method

=f

Ynt+1 = Yn+hf(Yn,tn)

e Retaining higher—order terms is inconvenient, as it requires differentiation of
f and does not lead to schemes with desirable stability properties.
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I1)

e Local error analysis:
Yng1 = (L+Ah) Yo +[O(h?)]
e Global error analysis:

global error) = Ch?- N = Ch?- T _ch
h

Thus, the scheme is
— locally second—order accurate

— globally (over the interval [to,to + Nh]) first-order accurate
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (111)

e Stability (for the model problem)

Yn+1 = Yn-+Ahyn = (1+Ah)y,
Thus, the solution after n time steps
Yn=(1+M)Yo 20"y = o=1+Ah
For large n, the numerical solution remains stable iff
loj<1 = (1+Mh)2+(Ah)2<1
— conditionally stable for real A

— unstable stable for imaginary A
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INITIAL VALUE PROBLEMS — INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (1) IMPLICIT EULER SCHEME (I1)

e Implicit Schemes — based on approximation of the RHS that involve e Stability (for the model problem):
f(Ynt1,t), where yn1 is the unknown to be determined Yort = ynt Ay = Yous = (1—AR)lyn

e Implicit Euler Scheme — obtained by neglecting second and higher—order

1 \" A . 1
terms in the expansion: Yol = (1—)\h) Yo= 00 = 9= 75,

loj]<1 = (1-Ah)2+(Ah)2>1

2
Vi) = Y1) 1Y (s2) + 5 Y (tar2)

§ Implicit Euler scheme is thus stable for
o dy| .
Upon substitution 5 = f (Ynt+1,tn+1) We obtain _ all stable model problems

Vi1 = Yn + hf (Ynt1,the1) — most unstable model problems

e When solving systems of ODEs of the form y = A4(t)y, each implicit step
requires solution of an algebraic system: yn,1 = (I —h4) 1y,

The scheme is

— locally second-order accurate
— globally (over the interval [to,to + Nh]) first-order accurate o Implicit schemes are generally hard to implement for nonlinear problems
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INITIAL VALUE PROBLEMS — INITIAL VALUE PROBLEMS —

CRANK—-NICHOLSON SCHEME (1) LEAPFROG SCHEME (1)
e Obtained by approximating the formal solution of the ODE

= 41 £ (y,t) dt using the t idal quadrature:
Yns1 =Yn-+ ™" F(y;t) dt using the trapezoidal quadrature: e Leapfrog as an example of a two-step method :

h
Yn+1 =Yn+ 2 [f(Yn;tn) + T (Yn+1,tnea)] Y1 = Yn—1+2hAyn

The scheme is e Characteristic equation for the amplification factor (yn = a"yp)
— locally third-order accurate 62—2hAG—-1=0

— globally (over the interval [tp,to + Nh]) second-order accurate ) o
where roots give the amplification factors:
A%h?
) O1=Ah+V14N20~ 1+Ah+— 4. = My o(hd)
Yn

e Stability (for the model problem):

1+ 4

Ah 2
Y1 =Yn+ - (Yn+1+Yn) = Ynp1= T
-z

2K2
02 =Ah—/14+A2h2 ~ —(1—)\h+%—...) =—e M4 o(h®)

2

A\ "
=2 Lo, — o= 71—'— 2 .
Yorr=| T73m | Yo= Yo 1 An Thus, the scheme is
2 2
loj<1 = O(Ah)<0 — locally third—order accurate

Stable for all model ODES with stable solutions — globally (over the interval [to,to + Nh]) second-order accurate
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INITIAL VALUE PROBLEMS —
LEAPFROG SCHEME (I1)

Stability for diffusion problems (A = A, ):

01 =Ah+4/1+A2h2>1 forall h>0

Thus the scheme is unconditionally unstable for diffusion problem!

Stability for advection problems (A =iA; ):

1
05/2:1 () for h< ™

Thus the scheme is conditionally unstable and non-diffusive for advection
problems!

Question — analyze dispersive (i.e., related to arg(o)) errors of the leapfrog
scheme.

INITIAL VALUE PROBLEMS —
MULTISTEP PROCEDURES

e General form of a multistep procedure :
p q
AjYntj =hn'> Bjf(Yntj,tne
]Zl J1Yn+] ,; J ( n+) nH)
with characteristic polynomials
(@ =apP+ap 127 - 0o
2q(2) = BgZ + Bg-12+ -+ +Bo
— if p>qg— explicit scheme
— if p< g— implicit scheme
e A (&,Q) —procedure converges uniformly in [a,b], i.e.,
liMp_0 MaX;, e[a by [Yn — Y(tn)| = 0 if:
— the following consistency conditions are verified: §(1) =0 and
&'(1) = (1) (consistency condition )
— all roots of the polynomial §(z) are such that |z| < 1 and the roots with
|z| = 1 are simple ( stability condition)
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS (I)
e General form of a fractional step method :
Y1 = Yn +Y1hke +y2hke +yshks + ...
where

ki = f(¥n,tn)

ka2 = f(yn +Pahky, tn +azh)

ks = f(yn+ B2hks 4+ Bshkz, ty +azh)

e Choose y;, Bi and a; to match as many expansion coefficients as possible in

h? h3
Y(tnr1) = Y(ta) + hy' (tn) + E)/I(tn) + Ey"(tn) e
y=f
y' =+,
Yy = fu+ fi fy2f fye + fzfy‘ + f2fyy

e Runge—Kautta methods are self-starting with fairly good stability and
accuracy properties.

INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS (I1)

e RK4 — an ODE workhorse:
h h h
Yn+1 =Yn+ ékl"r §(k2+k3)+ €k4
h
ki = f(Yn,tn) k2 = f(yn+ Eklytnﬂ/z)
h
ks = f(yn+ ske thi1/2) kg = f(yn+hka, thy1)

e The amplification factor:
0:1+)\h+¥+¥+%
Thus, stability iff |o| <1
e Accuracy:
e =o+0(h°)
Thus, the scheme is
— locally fifth—order accurate

— globally (over the interval [to,to + Nh]) fourth—order accurate
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INITIAL VALUE PROBLEMS —
RUNGE’S PRINCIPLE

Let (k+ 1) be the local truncation error; denote Y (t,h) an approximation of
the exact solution y(t) computed with the step size h; then att = tg+ 2nh:

y(t) = Y(t,h) ~ C2nh*+t  =C(t —to)hK
y(t) =Y (t,2h) ~ Cn(2h)*1 = C(t —tg)2¢ K

Subtracting:

Y(t,2h) — Y (t,h) ~ C(t —to) (1 — 2¥)hK
Thus we can obtain an estimate of the absolute error based on solution with
two step—sizes only:

YO = Y(t,h) ~ YHM =Y (.2

2k—1

Runge’s principle is very useful for adaptive step size refinement




