Numerical Methods for ODESs

PART I

Review of numerical methods for
Ordinary Differential Equations

17



Numerical Methods for ODESs

BOUNDARY VALUE PROBLEMS (I)

e Solving a two—point boundary value problem

for x € (0,2m)

e Finite—difference approximation:

— Second-order Central Difference formula for the interior nodes:

Yi+1—2Yj +Yj-1
h2

=gjforj=1,...,N

where h = N+1 and Xj = jh

— Endpoint nodes: )
Yo=0 =y2—-2y1=h"g

Ynr+1 = 0= —2yn +Yn_1 = h°On

— Tridiagonal algebraic system
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Numerical Methods for ODESs

BOUNDARY VALUE PROBLEMS (I1)

e Solving a two—point boundary value problem
dy _
dx2

dy .. dy B
d_x(o)_d_x(zn)_o

g for x € (0,2m)

e Finite—difference approximation:
— Second-order Central Difference formula for the interior nodes:

Yi+1—2Yj +Yj-1

h2
— First—order Forward/Backward Difference formulae to re—express
endpoint values: Vi —Yo

h
YN+1 — YN
h

First—order only — degraded accuracy!

=gjforj=1,...,N

— Tridiagonal algebraic system — Where is the problem?

19



Numerical Methods for ODESs 20

BOUNDARY VALUE PROBLEMS (I11)

e In order to retain second—order accuracy in the approximation of the
Neumann problem need to use higher-order formulae at endpoints, e.g.

v = —Y2 +4y1 —3Yo

1
oh =0 = Yo= 5(—Y2+4y1)

3

e The first row thus becomes
2, 2., _ h?

Second-order accuracy recovered!
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BOUNDARY VALUE PROBLEMS (1V)

Compact Stencils — stencils based on three grid points only:
{Xj+1,Xj,Xj—1} at the j —th node

Is is possible to obtain higher (then second) order of accuracy on compact
stencils? — YES!

Consider the central difference approximation to the equation %

Vi _2y._|_y._ h2 .
= Sy o) =g

(iv)
j

h2
Re-express the error term 5y

using the equation in question:

oy b, hlg+1—-2gi+gi-1  h* iy 4
2 TRY T e 1% o)

Inserting into the original finite—difference equation:

Yi+1—2Yj +Yj-1 _ . gj+1—20j +dj-1

2 9i 12 + O(h")

Slight modification of the RHS — fourth—order accuracy!!!
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BOUNDARY VALUE PROBLEMS (V)

e Compact Finite Difference Schemes — drawbacks:
— need to be tailored to the specific equation solved

— can get fairly complicated for more complex equations
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INITIAL VALUE PROBLEMS —
GENERAL REMARKS

Consider the following Cauchy problem :

d :
& = [0 with y(to) =y

The independent variable t is usually referred to as time .

Equations with higher—order derivatives can be reduced to systems of
first—order equations

Generalizations to systems of ODEs straightforward

When the RHS function doesn’t depend ony, i.e., f(y,t) = f(t),
solution obtained via quadrature

Assume uniform time-steps ( his constant )
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INITIAL VALUE PROBLEMS —
CHARACTERIZATION OF INTEGRATION
METHODS

e ACCURACY — unlike in the Boundary Value Problems, there is no terminal
condition and approximation errors may accumulate in time; consequently, a
relevant characterization of accuracy is provided by the global error

(global error) = (local error) x (# of time steps),
rather than the local error .

STABILITY — unlike in the Boundary Value Problems, where boundedness
of the solution at final time is enforced via a suitable terminal condition , in
Initial Value Problems there is a priori no guarantee that the solution will
remain bounded.
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INITIAL VALUE PROBLEMS —
MODEL PROBLEM

e Stability of various numerical schemes is usually analyzed by applying these
schemes to the following linear model:

dy _
dat
which is stable when A, <=0.

_ 212 A3n3
e Exact solution: y(t):yoe%t:(1+)\h+)\2h +)\6h +...>yo

Ay = (A +iNi)y with y(to) = Yo,

e Motivation — consider the following advection—diffusion PDE:

@+C@_a@ —O
ot ox  o0x2

Taking Fourier transform yields (k is the wavenumber):

~

%Jrcikawakzak:o

where -
— the real term ak? i represents diffusion

— the imaginary term ci kU represents advection
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I)

e Consider a Taylor series expansion

2
Vit 1) = Y)Y (1) + " t0) + ..

Using the ODE we obtain

_dy _
y=" =t

, dy df

Y == = = f+ 1y

e Neglecting terms proportional to second and higher powers of h yields the
Explicit Euler Method

Yn+1 = Yn+hf(¥n,tn)

e Retaining higher—order terms is inconvenient, as it requires differentiation of
f and does not lead to schemes with desirable stability properties.
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I1)

e Local error analysis:
Yn+1 = (1+Ah)yn +[O(h?)]

e Global error analysis:

T
(global error) = Ch?.N = Ch?. F= C'h

Thus, the scheme is
— locally second-order accurate

— globally (over the interval [tg,tg+ Nh|) first—order accurate
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (111)

e Stability (for the model problem)
Yn+1 = Yn+Ahyn = (1+Ah)y,
Thus, the solution after n time steps
Vo= (1+AN)"Yo = 0"y = o=1+Ah
For large n, the numerical solution remains stable iff
o<1 = (1+Ah)2+(Ah)?2<1
— conditionally stable for real A

— unstable stable for imaginary A
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INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (I)

e Implicit Schemes — based on approximation of the RHS that involve
f(Yne1,t), where y, 1 is the unknown to be determined

e Implicit Euler Scheme — obtained by neglecting second and higher—order
terms in the expansion:

2
Vitn) = Yltns1) — Y (i) + Y (tner) .

Upon substitution %%’ L= f(Yne1,the1) We obtain
n+1

Y+l = Yn +hf(Yni1,the1)

The scheme is
— locally second-order accurate

— globally (over the interval [tg,tg+ Nh]) first—order accurate
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INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (1)

e Stability (for the model problem):

Y1 =Yn+AYni1 = Y1 =(1 _)\h)_l)’n

1—h
0| <1 = (1-Ah)?+(Ah)?>1

1—Ah

1 n
Yn+1:( ) YOéOnYO — 0=

Implicit Euler scheme is thus stable for
— all stable model problems

— most unstable model problems

e When solving systems of ODEs of the form y = A4(t)y, each implicit step
requires solution of an algebraic system: y,1 = (I —ha) "y,

e Implicit schemes are generally hard to implement for nonlinear problems
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INITIAL VALUE PROBLEMS —

CRANK—NICHOLSON SCHEME (I)

e Obtained by approximating the formal solution of the ODE
Yn+1=Yn+ fttn”“ f(y,t) dt using the trapezoidal quadrature:

h
Yn+t1 =Yn+ > [f(Yn,th) + f(Ynt+1,tht1)]

The scheme is
— locally third—order accurate
— globally (over the interval [to,tg+ Nh]) second-order accurate

e Stability (for the model problem):

Ah 1+ 2]
Yner1 =Yn+ > (Ynr1+Yn) = VYny1= vl BAL
1-%

Stable for all model ODEs with stable solutions
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INITIAL VALUE PROBLEMS —
LEAPFROG SCHEME (I)

e Leapfrog as an example of a two-step method :
Yn+1 = Yn-1+2hAyn

e Characteristic equation for the amplification factor (yn = a"yp)
0°—2hAc—1=0

where roots give the amplification factors:

212

A2h
01 =Ah+v1+A2h2 ~ L+Ah+ —— ... = '+ o(h?)

22
02 = Ah—+v/1+A2h2~ —(1—Ah+ % —..)=—e M4 omnd

Thus, the scheme is
— locally third—order accurate
— globally (over the interval [tg,tg+ Nh]) second—order accurate
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INITIAL VALUE PROBLEMS —
LEAPFROG SCHEME (I1)

e Stability for diffusion problems (A = A, ):

01 =Ah+4/1+A2h?>1 forall h>0

Thus the scheme is unconditionally unstable for diffusion problem!

e Stability for advection problems (A =iA; ):

1
07y =1 (1) for h< i

Thus the scheme is conditionally unstable and non—-diffusive for advection
problems!

e Question — analyze dispersive (i.e., related to arg(o)) errors of the leapfrog
scheme.
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INITIAL VALUE PROBLEMS —
MULTISTEP PROCEDURES

e General form of a multistep procedure :
p g
z Ojyn+j =h Z Bj f(Yntj,th+j)
=1 =1

with characteristic polynomials

ZQ(Z) = quq + Bq_lzq_l +-+Bo

— If p> g— explicit scheme
— if p < q— implicit scheme
o A (&, () —procedure converges uniformly in [a,b], i.e.,
limn—,0 Max, cja b [Yn — Y(tn)[ = O if:

— the following consistency conditions are verified: (1) =0 and
&'(1) = {(1) ( consistency condition )

— all roots of the polynomial §(z) are such that |z| < 1 and the roots with
1z¢| = 1 are simple ( stability condition)
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS (1)

e General form of a fractional step method :
Ynr1 = Yn+Yrhki +yohko +yshks + ...
where
ki = f(Yn,tn)
ko = f(yn+ B1hks,th +aih)
ks = f(yn+ B2hky + Bshkz, tn + azh)

e Choose V;, Bi and a; to match as many expansion coefficients as possible in

Y(ine1) = Ylt) + 1 (1) 2y (0) + " (1)
y =f
Y = i+ £,
y" = fu+ fi f,2f fyp + 26 + F2 1,y

e Runge—Kutta methods are self-starting with fairly good stability and
accuracy properties.
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS (1)

e RK4 — an ODE workhorse;

h

h h
Yn+1:yn+ékl+ :—g(k2+k3)—|—€—5k4

h
ki = f(Yn,tn) ko = f(yn+ Eklatn—i-l/Z)

h
k3 — f(Yn + §k2,tn+1/2) k4 - f(Yn + hk37tn-|-l)

e The amplification factor:
A%h% ASh3  A%h?

0=1+Ah+ > T T

Thus, stability iff o) <1

e Accuracy:
=g+ 0o(h°)

Thus, the scheme is
— locally fifth—order accurate
— globally (over the interval [tg,tg+ Nh]|) fourth—order accurate
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INITIAL VALUE PROBLEMS —
RUNGE’S PRINCIPLE

Let (k+ 1) be the local truncation error; denote Y (t, h) an approximation of
the exact solution y(t) computed with the step size h; then att = tg + 2nh:

y(t) =Y (t,h) ~ C2nh*t1 = C(t —to)h
y(t) = Y(t,2h) ~ Cn(2h)*+1 = C(t —tg)2¥h*

Subtracting:
Y(t,2h) — Y (t,h) ~ C(t —tg) (1 — 2¥)hX

Thus we can obtain an estimate of the absolute error based on solution with

two step—sizes only:

Y(t,h) — Y(t, 2h)
k1

y(t) o Y(t7 h) =

Runge’s principle is very useful for adaptive step size refinement




