Approximation Theory 38 Approximation Theory

PART III

Review of Approximation Theory

INNER PRODUCTS, UNITARY SPACES, HILBERT SPACES

• Consider a real or complex linear space V; A scalar product is real or complex number (x,y) associated with the elements $x,y \in V$ with the following properties:

$$-(x,x)$$
 is real, $(x,x) \ge 0$, $(x,x) = 0$ only if $x = 0$,

$$-(x,y)=\overline{(y,x)},$$

$$-(\alpha_1x_1 + \alpha_2x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$$

- A normed space V is said to be unitary if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- A complete unitary space **H** is called a Hilbert space

Approximation Theory 40

ORTHOGONALITY

- Two elements x and y of a Hilbert space \mathbf{V} are said to be mutually orthogonal $(x \perp y)$ if (x,y) = 0. A countable set of elements $x_1, x_2, \dots, x_k, \dots$ is said to be orthonormal (or to form an orthonormal systems) if $(x_i, x_j) = \delta_{ij}$
- The following properties hold:
 - $-x \perp 0$ for all $x \in \mathbf{V}$
 - $-x \perp x$ only if x = 0
 - if $x \perp \mathbf{A}$, i.e., $x \perp y$ for all $y \in \mathbf{A} \subseteq \mathbf{V}$, then x is also orthogonal to the linear hull $\mathcal{L}(\mathbf{A})$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if **A** is dense in **V** and $x \perp \mathbf{A}$, then x = 0
- Schmidt orthogonalization Let **A** be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space **H**. Then there is an orthonormal system $\mathbf{F} = \{e_i \in \mathbf{V} : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathbf{A}_k = \{x_j : j = 1, \ldots, k\}$ and $\mathbf{F}_k = \{e_j : j = 1, \ldots, k\}$ are the same for all k.

Approximation Theory 41

APPROXIMATION IN HILBERT SPACES (I)

• Let $\{e_1, e_2, \dots\}$ be an orthonormal system in a Hilbert space \mathbf{H} and let \mathbf{H}_k be the linear hull of $\{e_1, \dots, e_k\}$. Then for every $x \in \mathbf{H}$ the element $a = \sum_{j=1}^k (x, e_j) e_j \in \mathbf{H}_k$ has the property that $||x - a|| \le ||x - y||$ for all $y \in \mathbf{H}_k$. The numbers (x, e_j) are called the Fourier coefficients relative to the orthonormal system $\{e_1, e_2, \dots\}$. Furthermore, from $||x - a||^2 \ge 0$ follows the Bessel inequality:

$$\sum_{j=1}^{k} |(x, e_j)|^2 \le (x, x)$$

• If **A** is a given set in a Hilbert space **H**, then

$$\mathbf{A}^{\perp} = \{ x : (x, a) = 0 \text{ for all } a \in \mathbf{A} \}$$

is a closed linear subspace of \mathbf{H} . It is, therefore, itself a Hilbert space and is called the orthogonal complement of \mathbf{A}

APPROXIMATION IN HILBERT SPACES (II)

• If \mathbf{H}_1 is a closed linear subspace of a Hilbert space \mathbf{H} and \mathbf{H}_2 is its orthogonal complement, then every $x \in \mathbf{H}$ can be uniquely represented in the form

$$x = x_1 + x_2, (x_1 \in \mathbf{H}_1, x_2 \in \mathbf{H}_2)$$

One writes $\mathbf{H} = \mathbf{H}_1 \oplus \mathbf{H}_2$ and calls \mathbf{H} an orthogonal sum of \mathbf{H}_1 and \mathbf{H}_2 . Since

$$||x-x_1|| = \rho(x, \mathbf{H}_1) = \inf_{y_1 \in \mathbf{H}_1} \{||x-y_1||\},$$

$$||x-x_2|| = \rho(x, \mathbf{H}_2) = \inf_{y_2 \in \mathbf{H}_2} \{||x-y_2||\},$$

one calls x_1 and x_2 the orthogonal projections of x on \mathbf{H}_1 and \mathbf{H}_2 , respectively.

Approximation Theory

APPROXIMATION IN HILBERT SPACES (III)

- Let $\{e_1, e_2, ...\}$ be a countable orthonormal system in a Hilbert space **H**. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) e_j$ defines an element of **H** for every $x \in \mathbf{H}$. This is called the Fourier series of x
- The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $\mathbf{H}_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \dots, e_k, \dots\}$ is complete in **H**, i.e., $\overline{\mathcal{L}(\{e_1, \dots, e_k, \dots\})} = \mathbf{H}$, then the Fourier series for any $x \in \mathbf{H}$ converges to x
- An orthonormal system is said to be closed if the Parceval equation

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in \mathbf{H}$. An orthonormal system is closed IFF it is complete.

• An orthonormal system in a separable Hilbert space is at most countable

Approximation Theory 44

APPROXIMATION IN HILBERT SPACES (IV)

Statement of a General Approximation Problem in a Hilbert space H —
consider a fixed element f∈ H and G_n⊆ H which is a finite-dimensional
subspace of H (with the same norm). Want to find an element ĝ∈ G_n such
that

$$D(f, \mathbf{G_n}, ||\cdot||) \triangleq \inf_{\mathbf{g} \in \mathbf{G_n}} \{||\mathbf{f} - \mathbf{g}||\} = ||\mathbf{f} - \hat{\mathbf{g}}||$$

The element \hat{g} is called the best approximation and the number $D(f, \mathbf{G_n}, \|\cdot\|)$ the defect .

- Issues:
 - Does the best approximation \hat{g} exist?
 - Can \hat{g} be uniquely determined?
 - How can \hat{g} be computed?

Approximation Theory 45

APPROXIMATION IN HILBERT SPACES (V)

• The approximation problem in a Hilbert space **H** has a unique solution \hat{g} for which $(\hat{g} - f, h) = \text{holds for all } h \in \mathbf{G_n}$. If $\{e_1, \dots, e_n\}$ is a basis of $\mathbf{G_n}$, then

$$\hat{g} = \sum_{i=1}^{n} c_j^{(n)} e_j$$

with

$$\sum_{i=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$

and

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 - \sum_{j=1}^n c_j^{(n)}(e_j, f)$$

- Thus, the Fourier coefficients $c_j^{(n)}$ $j=1,\ldots,n$ can be calculated by solving an algebraic system with the Hermitian, positive–definite matrix $A_{jk}=(e_j,e_k)$ (the so called Gram matrix).
- Is the basis $\{e_1, \dots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$