PART III

Review of Approximation Theory

Approximation Theory 40

ORTHOGONALITY

- Two elements *^x* and *y* of ^a Hilbert space **V** are said to be mutually orthogonal $(x \perp y)$ if $(x,y) = 0$. A countable set of elements $x_1, x_2, \ldots, x_k, \ldots$ is said to be orthonormal (or to form an orthonormal systems) if $(x_i, x_j) = \delta_{ij}$
- The following properties hold:
	- $x \perp 0$ for all $x \in V$
	- $x \perp x$ only if $x = 0$
- $-$ if $x \perp A$, i.e., $x \perp y$ for all $y \in A \subseteq V$, then *x* is also orthogonal to the linear hull $L(A)$ $A = C$

(or op $x \in$
 $x = x$
 A
	- $-$ if $x \perp y_n$ ($n = 1, 2, \ldots$) and $y_n \rightarrow y$, then $x \perp y$
	- $-$ if **A** is dense in **V** and $x \perp$ **A**, then $x = 0$
- Schmidt orthogonalization Let A be a set of countably many linearly independent elements $x_1, x_2, \ldots, x_k, \ldots$ of a Hilbert space **H**. Then there is an orthonormal system $\mathbf{F} = \{e_i \in \mathbf{V} : (e_i, e_j) = \delta_{ij}\}\$, such that the linear hulls of $A_k = \{x_j : j = 1, ..., k\}$ and $F_k = \{e_j : j = 1, ..., k\}$ are the same for all *k*.

INNER PRODUCTS, UNITARY SPACES, HILBERT SPACES

- Consider ^a real or complex linear space **V**; A scalar product is real or complex number (x, y) associated with the elements $x, y \in V$ with the following properties: .
.
.
.
	- (x, x) is real, $(x, x) \ge 0$, $(x, x) = 0$ only if $x = 0$,
	- $(x, y) = (y, x)$
	- $-\left(\alpha_1 x_1 + \alpha_2 x_2, y\right) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- A normed space **V** is said to be unitary if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- A complete unitary space **H** is called ^a Hilbert space

Approximation Theory 41

APPROXIMATION IN HILBERT SPACES (I)

• Let $\{e_1, e_2, \dots\}$ be an orthonormal system in a Hilbert space **H** and let \mathbf{H}_k be the linear hull of $\{e_1, \ldots, e_k\}$. Then for every $x \in \mathbf{H}$ the element $a = \sum_{j=1}^{k} (x, e_j) e_j \in \mathbf{H}_k$ has the property that $||x - a|| \le ||x - y||$ for all $y \in H_k$. The numbers (x, e_j) are called the Fourier coefficients relative to the orthonormal system $\{e_1, e_2, \dots\}$. Furthermore, from $||x - a||^2 \ge 0$ follows the Bessel inequality : Then for every *x*

property that $\|\cdot\|$

called the Fou
 \dots }. Furthermo
 $\sum |(x, e_j)|^2 \le (x, x)$

quality :
\nquality :
\n
$$
\sum_{j=1}^{k} |(x, e_j)|^2 \leq (x, x)
$$
\nHilbert space **H**, then
\n
$$
\mathbf{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathbf{A}\}
$$

If **A** is ^a given set in ^a Hilbert space **H**, then

$$
\mathbf{A}^{\perp} = \{x : (x, a) = 0 \text{ for all } a \in \mathbf{A}\}
$$

is ^a closed linear subspace of **H**. It is, therefore, itself ^a Hilbert space and is called the orthogonal complement of **A**

APPROXIMATION IN HILBERT SPACES (II)

If \mathbf{H}_1 is a closed linear subspace of a Hilbert space **H** and \mathbf{H}_2 is its orthogonal complement, then every $x \in$ **H** can be uniquely represented in the form **HILBERT**
*x*¹ *x*² **h**₂ *x*² **h**₂ *x*² *x x*₂ *x*² *x***₂** *x x*₂ *x*₂ *x*₂

$$
x = x_1 + x_2, \ (x_1 \in \mathbf{H}_1, x_2 \in \mathbf{H}_2)
$$

One writes $\mathbf{H} = \mathbf{H}_1 \oplus \mathbf{H}_2$ and calls **H** an orthogonal sum of \mathbf{H}_1 and \mathbf{H}_2 . Since

$$
\oplus \mathbf{H}_2 \text{ and calls } \mathbf{H} \text{ an orthogonal sum of}
$$

 $||x - x_1|| = \rho(x, \mathbf{H}_1) = \inf_{y_1 \in \mathbf{H}_1} {||x - y_1||},$
 $||x - x_2|| = \rho(x, \mathbf{H}_2) = \inf_{y_2 \in \mathbf{H}_2} {||x - y_2||},$

one calls x_1 and x_2 the orthogonal projections of x on H_1 and H_2 , respectively.

Approximation Theory 44

APPROXIMATION IN HILBERT SPACES (IV)

Statement of ^a General Approximation Problem in ^a Hilbert space **H** consider a fixed element $f \in H$ and $G_n \subseteq H$ which is a finite–dimensional subspace of **H** (with the same norm). Want to find an element $\hat{g} \in G_n$ such that

$$
D(f, \mathbf{G_n}, ||\cdot||) \triangleq \inf_{\mathbf{g} \in \mathbf{G_n}} \{ ||\mathbf{f} - \mathbf{g}|| \} = ||\mathbf{f} - \hat{\mathbf{g}}||
$$

The element \hat{g} is called the best approximation and the number $D(f, G_n, ||\cdot||)$ the defect.

- Issues:
	- **–** Does the best approximation *g*^ˆ exist?
	- **–** Can *g*^ˆ be uniquely determined?
	- **–** How can *g*^ˆ be computed?

APPROXIMATION IN HILBERT SPACES (III)

- Let $\{e_1, e_2, \dots\}$ be a countable orthonormal system in a Hilbert space **H**. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) e_j$ defines an element of **H** for every $x \in$ **H**. This is called the Fourier series of x
- The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of *x* on the subspace $\mathbf{H}_n = \mathcal{L}(\{e_1, \ldots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in **H**, i.e., $\overline{L(\{e_1, \ldots, e_k, \ldots\})} =$ **H**, then the Fourier series for any $x \in$ **H** converges to *x*
- An orthonormal system is said to be closed if the Parceval equation

$$
\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2
$$

holds for every $x \in \mathbf{H}$. An orthonormal system is closed IFF it is complete.

An orthonormal system in ^a separable Hilbert space is at most countable

Approximation Theory 45

APPROXIMATION IN HILBERT SPACES (V)

• The approximation problem in a Hilbert space **H** has a unique solution \hat{g} for which $(g - f, h) =$ holds for all $h \in G_n$. If $\{e_1, \ldots, e_n\}$ is a basis of G_n , then

$$
\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j
$$

with

$$
\sum_{j=1}^{n} c_j^{(n)}(e_j, e_k) = (f, e_k), \ \ j = 1, \dots, n
$$

and

$$
\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j
$$

$$
\sum_{j=1}^{n} c_j^{(n)} (e_j, e_k) = (f, e_k), \ j = 1, ..., n
$$

$$
||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 - \sum_{j=1}^{n} c_j^{(n)} (e_j, f)
$$

- Thus, the Fourier coefficients $c_j^{(n)}$ $j = 1, \dots, n$ can be calculated by solving an algebraic system with the Hermitian, positive–definite matrix $A_{jk} = (e_j, e_k)$ (the so called Gram matrix).
- Is the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$