PART III

Review of Approximation Theory

INNER PRODUCTS, UNITARY SPACES, HILBERT SPACES

- Consider a real or complex linear space V; A scalar product is real or complex number (*x*, *y*) associated with the elements *x*, *y* ∈ V with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,

$$- (x,y) = \overline{(y,x)},$$

$$- (\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 (x_1, y) + \alpha_2 (x_2, y)$$

- A normed space V is said to be unitary if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- A complete unitary space **H** is called a Hilbert space

ORTHOGONALITY

- Two elements x and y of a Hilbert space V are said to be mutually orthogonal $(x \perp y)$ if (x, y) = 0. A countable set of elements $x_1, x_2, \dots, x_k, \dots$ is said to be orthonormal (or to form an orthonormal systems) if $(x_i, x_j) = \delta_{ij}$
- The following properties hold:
 - $-x \perp 0$ for all $x \in \mathbf{V}$
 - $-x \perp x$ only if x = 0
 - if $x \perp \mathbf{A}$, i.e., $x \perp y$ for all $y \in \mathbf{A} \subseteq \mathbf{V}$, then *x* is also orthogonal to the linear hull $\mathcal{L}(\mathbf{A})$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if **A** is dense in **V** and $x \perp \mathbf{A}$, then x = 0
- Schmidt orthogonalization Let A be a set of countably many linearly independent elements x₁,x₂,...,x_k,... of a Hilbert space H. Then there is an orthonormal system F = {e_i ∈ V : (e_i,e_j) = δ_{ij}}, such that the linear hulls of A_k = {x_j : j = 1,...,k} and F_k = {e_j : j = 1,...,k} are the same for all *k*.

APPROXIMATION IN HILBERT SPACES (I)

Let {e₁,e₂,...} be an orthonormal system in a Hilbert space **H** and let **H**_k be the linear hull of {e₁,...,e_k}. Then for every x ∈ **H** the element a = ∑_{j=1}^k (x,e_j)e_j ∈ **H**_k has the property that ||x - a|| ≤ ||x - y|| for all y ∈ **H**_k. The numbers (x,e_j) are called the Fourier coefficients relative to the orthonormal system {e₁,e₂,...}. Furthermore, from ||x - a||² ≥ 0 follows the Bessel inequality :

$$\sum_{j=1}^{k} |(x, e_j)|^2 \le (x, x)$$

• If **A** is a given set in a Hilbert space **H**, then

$$\mathbf{A}^{\perp} = \{ x : (x, a) = 0 \text{ for all } a \in \mathbf{A} \}$$

is a closed linear subspace of **H**. It is, therefore, itself a Hilbert space and is called the orthogonal complement of **A**

APPROXIMATION IN HILBERT SPACES (II)

If H₁ is a closed linear subspace of a Hilbert space H and H₂ is its orthogonal complement, then every *x* ∈ H can be uniquely represented in the form

$$x = x_1 + x_2, (x_1 \in \mathbf{H}_1, x_2 \in \mathbf{H}_2)$$

One writes $\mathbf{H} = \mathbf{H}_1 \oplus \mathbf{H}_2$ and calls \mathbf{H} an orthogonal sum of \mathbf{H}_1 and \mathbf{H}_2 . Since

$$||x - x_1|| = \rho(x, \mathbf{H}_1) = \inf_{y_1 \in \mathbf{H}_1} \{||x - y_1||\},\$$

$$||x - x_2|| = \rho(x, \mathbf{H}_2) = \inf_{y_2 \in \mathbf{H}_2} \{||x - y_2||\},\$$

one calls x_1 and x_2 the orthogonal projections of x on \mathbf{H}_1 and \mathbf{H}_2 , respectively.

APPROXIMATION IN HILBERT SPACES (III)

- Let {e₁, e₂,...} be a countable orthonormal system in a Hilbert space **H**. By Bessel inequality, the series ∑_{j=1}[∞](x, e_j)e_j = lim_{n→∞}∑_{j=1}ⁿ(x, e_j)e_j defines an element of **H** for every x ∈ **H**. This is called the Fourier series of x
- The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $\mathbf{H}_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in **H**, i.e., $\overline{\mathcal{L}(\{e_1, \ldots, e_k, \ldots\})} = \mathbf{H}$, then the Fourier series for any $x \in \mathbf{H}$ converges to x
- An orthonormal system is said to be closed if the Parceval equation

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in \mathbf{H}$. An orthonormal system is closed IFF it is complete.

• An orthonormal system in a separable Hilbert space is at most countable

APPROXIMATION IN HILBERT SPACES (IV)

Statement of a General Approximation Problem in a Hilbert space H — consider a fixed element *f* ∈ H and G_n ⊆ H which is a finite–dimensional subspace of H (with the same norm). Want to find an element *ĝ* ∈ G_n such that

$$D(f, \mathbf{G}_{\mathbf{n}}, \|\cdot\|) \triangleq \inf_{\mathbf{g}\in\mathbf{G}_{\mathbf{n}}} \{\|\mathbf{f}-\mathbf{g}\|\} = \|\mathbf{f}-\mathbf{\hat{g}}\|$$

The element \hat{g} is called the best approximation and the number $D(f, \mathbf{G_n}, \|\cdot\|)$ the defect.

- Issues:
 - Does the best approximation \hat{g} exist?
 - Can \hat{g} be uniquely determined?
 - How can \hat{g} be computed?

APPROXIMATION IN HILBERT SPACES (V)

• The approximation problem in a Hilbert space **H** has a unique solution \hat{g} for which $(\hat{g} - f, h) =$ holds for all $h \in \mathbf{G_n}$. If $\{e_1, \dots, e_n\}$ is a basis of $\mathbf{G_n}$, then

$$\hat{g} = \sum_{j=1}^{n} c_j^{(n)} e_j$$

with

$$\sum_{j=1}^{n} c_j^{(n)}(e_j, e_k) = (f, e_k), \ j = 1, \dots, n$$

and

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||f||^2 - \sum_{j=1}^n c_j^{(n)}(e_j, f)$$

- Thus, the Fourier coefficients c_j⁽ⁿ⁾ j = 1,...,n can be calculated by solving an algebraic system with the Hermitian, positive–definite matrix A_{jk} = (e_j, e_k) (the so called Gram matrix).
- Is the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$