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Abstract.-Stochastic factors affecting the demography of a single population are analyzed 
to determine the relative risks of extinction from demographic stochasticity, environmental 
stochasticity, and random catastrophes. Relative risks are assessed by comparing asymptotic 
scaling relationships describing how the average time to extinction, T, increases with the car- 
rying capacity of a population, K, under each stochastic factor alone. Stochastic factors are 
added to a simple model of exponential growth up to K. A critical parameter affecting the 
extinction dynamics is r, the long-run growth rate of a population below K, including stochastic 
factors. If f is positive, with demographic stochasticity T increases asymptotically as a nearly 
exponential function of K, and with either environmental stochasticity or random catastrophes 
T increases asymptotically as a power of K. If f is negative, under any stochastic demographic 
factor, T increases asymptotically with the logarithm of K. Thus, for sufficiently large popula- 
tions, the risk of extinction from demographic stochasticity is less important than that from 
either environmental stochasticity or random catastrophes. The relative risks of extinction from 
environmental stochasticity and random catastrophes depend on the mean and environmental 
variance of population growth rate, and the magnitude and frequency of catastrophes. Contrary 
to previous assertions in the literature, a population of modest size subject to environmental 
stochasticity or random catastrophes can persist for a long time, if f is substantially positive. 

Understanding the risks of extinction affecting single populations is important 
in both pure and applied ecology, in the development of models of more complex, 
spatially distributed populations, and in the formulation of effective conservation 
plans for threatened and endangered species (Soule and Simberloff 1986; Lande 
1988; Karieva 1990; Gilpin and Hanski 1991). 

In an important article, Shaffer (1981) suggested that stochastic demographic 
and genetic factors determine the minimum size of a viable population, which 
can be defined in terms of the probability of extinction within a specified time 
(e.g., a 95% probability of persistence for 100 yr, or a 99% probability of persis- 
tence for 1,000 yr). Ginzburg et al. (1982) advocated the use of stochastic demo- 
graphic models as a basis for risk assessment in environmental impact statements. 
Concepts and methods of stochastic population modeling play an integral part in 
population viability analysis (Gilpin and Soule 1986; Burgman et al. 1993). 

Shaffer (1981, 1987) discussed three stochastic demographic factors that are 
the subject of the present article. First, demographic stochasticity is caused by 
chance realizations of individual probabilities of death and reproduction in a finite 
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population. Because independent individual events tend to average out in large 
populations, demographic stochasticity is most important in small populations. 
Second, environmental stochasticity arises from a nearly continuous series of 
small or moderate perturbations that similarly affect the birth and death rates of 
all individuals (within each age or stage class) in a population (May 1974). In 
contrast to demographic stochasticity, environmental stochasticity is important 
in both large and small populations. Finally, catastrophes are large environmental 
perturbations that produce sudden major reductions in population size. Like envi- 
ronmental stochasticity, catastrophes are important in populations of all sizes. 

Based on models of stochastic population growth and simple scaling arguments 
concerning the average time until extinction of a population due to each of these 
factors acting alone, Shaffer (1987) attempted to deduce their relative importance. 

It is well-known that under demographic stochasticity alone (in a constant 
environment) the average time to extinction increases almost exponentially with 
carrying capacity (MacArthur and Wilson 1967; Richter-Dyn and Goel 1972; 
Leigh 1981; Gabriel and Burger 1992). Ludwig (1976) and formulas in Leigh (1981) 
and Tier and Hanson (1981) show that, under density-dependent population 
growth in a random environment, the mean time to extinction is a power function 
of the carrying capacity. In contrast, Goodman (1987a, 1987b) claimed that be- 
cause of environmental stochasticity alone the average time to extinction always 
increases less than linearly with carrying capacity. Ewens et al. (1987) developed 
a density-independent catastrophe model and concluded that the average time to 
extinction increases only logarithmically with initial population size. From the 
qualitative scaling relationships in Goodman (1987a, 1987b) and Ewens et al. 
(1987), Shaffer (1987) concluded that random catastrophes are more important 
than environmental stochasticity, which is more important than demographic sto- 
chasticity in determining average persistence times of populations. Later authors 
presented the same conclusions (Pimm and Gilpin 1989; Soule and Kohm 1989; 
Hedrick and Miller 1992). 

The relative importance of demographic and environmental stochasticity and 
random catastrophes discussed by Shaffer (1987) is intuitively appealing and 
eventually may be supported by empirical evidence. However, I demonstrate in 
this article, as shown by previous results of Ludwig (1976), Leigh (1981), and 
Tier and Hanson (1981), that Goodman's (1987a, 1987b) somewhat less than linear 
scaling of average extinction time with carrying capacity under environmental 
stochasticity is incorrect. I also show that the logarithmic scaling of average 
extinction time with initial population size under random catastrophes found by 
Ewens et al. (1987) does not generalize to density-dependent population growth. 

I develop analytical models showing that curves of average persistence time 
as a function of population size may be concave or convex under the influence 
of either environmental stochasticity or random catastrophes, and I show that no 
general theoretical statement can be made concerning the relative risks of popula- 
tion extinction from these two stochastic factors. When the long-run growth rate 
of a population is negative, regardless of whether the cause is deterministic or 
stochastic, the average extinction time scales logarithmically with initial popula- 
tion size, as suggested by Ludwig (1976) and Brockwell (1985). To demonstrate 
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these assertions, I analyze the mean time to extinction in a simple model of 
density-dependent growth of a population subject to different demographic risks. 

DETERMINISTIC MODEL 

To facilitate the analysis of stochastic factors affecting population growth, I 
introduce a simple deterministic model of density-dependent growth of a popula- 
tion without age structure. The population size, N, has a constant per capita 
growth rate, r, except at the carrying capacity (or ceiling), K, where growth 
ceases: 

dN JrN for 1<N<K 
dt 0 for N= K. (1) 

For an initial population size No between one and K, the population grows expo- 
nentially with time t as N(t) = Noert. If r is positive, population growth continues 
until K is reached. This simple model of exponential growth up to a carrying 
capacity was analyzed by MacArthur and Wilson (1967), Leigh (1981), and Good- 
man (1987a, 1987b) in their investigations of demographic and environmental 
stochasticity. 

If r is negative, the population declines to extinction, which is defined to occur 
at a population size of N = 1 individual. For a population initially at carrying 
capacity, No = K, the time until extinction, - (ln K)lr, then depends on the 
natural logarithm of the initial size. In the following sections we will see that a 
roughly logarithmic dependence of extinction time on initial population size car- 
ries over to stochastic models. 

DIFFUSION THEORY FOR STOCHASTIC MODELS 

Demographic and environmental stochasticity, involving a nearly continual se- 
ries of small or moderate perturbations of the population numbers, can be accu- 
rately modeled as a diffusion process, provided that the mean absolute growth 
rate per unit time is small, I|r << 1 (Keiding 1975; Leigh 1981). For populations 
with discrete generations this condition implies a low growth rate per generation. 
For populations with overlapping generations that reproduce at discrete times, 
the condition is less restrictive, requiring only a low growth rate per reproductive 
interval (if mortality and reproductive rates are independent of age). 

Diffusion theory can then be employed to calculate the mean time to extinction 
of the population (Karlin and Taylor 1981, chap. 15). A diffusion process is com- 
pletely described by its infinitesimal moments and by the behavior of sample 
paths at the boundaries. For a population of size N, the infinitesimal mean and 
variance, pL(N) and c2(N), give, respectively, the expected change and the vari- 
ance of the change in population size per unit time. Starting from a given initial 
size, No, the mean time to extinction, denoted as T T(NO), is the solution of 

2 d dNo (2) 
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with the boundary conditions T(1) = 0 and a reflecting boundary at K. A reflecting 
boundary condition with density-independent population growth was employed 
by MacArthur and Wilson (1967), Leigh (1981), and Goodman (1987b). The same 
result can be obtained more simply by regarding equation (1) as the limit of a 
continuum of models with weaker forms of density dependence (see, e.g., Rich- 
ter-Dyn and Goel 1972). We can then use the general solution to equation (2) in 
Karlin and Taylor (1981) to show that 

(No r K eG(y) 
T(NO) = 2J| e-G(z) | ( dy dz, (3) 

where 

G(y) = 2 |AN) dN. 
a2(N) 

This formula differs slightly from that of Ludwig (1976, eq. [3.12]) and Leigh 
(1981, eq. [8]) because they defined extinction as occurring at a population size 
of N = 0 instead of 1, and we have incorporated the fact that N cannot exceed 
K in equation (1). 

For populations subject to demographic or environmental stochasticity, with 
positive long-run growth rates and a sufficiently large initial size, Richter-Dyn 
and Goel (1972) and Leigh (1981) showed that the average time to extinction is 
nearly independent of the initial population size. A similar conclusion holds for 
populations subject to random catastrophes (see Appendix formula [A15a]). This 
occurs because such a population is most likely to grow quickly toward carrying 
capacity and to spend a long time fluctuating near K before stochastic factors 
finally cause extinction. The persistence of an established population with a posi- 
tive long-run growth rate can thus be accurately described by its average time to 
extinction starting from carrying capacity. 

We therefore follow Shaffer (1987) in considering the extinction dynamics of 
density-dependent populations that start at carrying capacity. Formula (3) will be 
used to evaluate the influence of demographic and environmental stochasticity 
on population persistence and to compare the results for populations with positive 
or negative long-run growth rates to those of earlier authors. 

DEMOGRAPHIC STOCHASTICITY 

In a finite population, the per capita growth rate, r, is subject to random varia- 
tion due to independent chances of individual mortality and reproduction. Thus, 
for a population of size N, r is a random variable with mean -r and variance 
VIIN per unit time, with no autocorrelation. The parameter VI is the variance in 
individual fitness per unit time (Keiding 1975; Leigh 1981; Goodman 1987a, 
1987b). The growth rate of a population at a particular time, r, is the mean 
Malthusian fitness of individuals in the population (Crow and Kimura 1970, chap. 
1), and its variance follows the standard statistical formula for the sampling vari- 
ance of a mean (i.e., individual variance divided by population size). The long-run 
growth rate of a population subject to demographic stochasticity is simply r = r. 
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Assuming that the continuous-time model in equation (1) represents an approxi- 
mation to an actual population that reproduces at discrete time intervals, the Ito 
stochastic calculus is appropriate to obtain the infinitesimal mean and variance 
of the diffusion process (Turelli 1977; Karlin and Taylor 1981, chap. 15.14), which 
are 

,u(N) = *N and &2(N) = VIN. (4) 

For populations initially at carrying capacity, No = K, the average time to extinc- 
tion, from formula (3), is 

T() I rKeWiN- ) I JI NdN - lnK (Sa) 

where a = 2r/VI. Leigh (1981, pp. 220-221) derived a similar formula, assuming 
VI = 1. Figure 1 illustrates the average extinction time as a function of carrying 
capacity for populations with different mean growth rates. 

Asymptotic scaling relationships for the average extinction time with increasing 
carrying capacity can be derived from formula (Sa) in cases where r is positive, 
zero, or negative. For positive i, the integral in formula (Sa) can be approximated 
by expanding 1IN in a Taylor series around 1/K (as in Leigh 1981), and if aK > 
1, we can retain only the first two terms in the series to find 

e a(K-1) I 1 
T(K)= - K (I + K1 for aK? 1. (Sb) 

1'aK a 

The dominant term is proportional to e(aK/K. This nearly exponential scaling of 
average extinction time is qualitatively consistent with previous results (Mac- 
Arthur and Wilson 1967; Richter-Dyn and Goel 1972; Leigh 1981; Goodman 
1987b; Gabriel and Burger 1992). 

For * = 0, equation (Sa) reduces to a nearly linear dependence of aver- 
age extinction time on carrying capacity, T(K) = 2(K - 1 - ln K)/VI, in close 
agreement with the linear relationship derived by Leigh (1981). 

For negative r, when -aK > 1 the integral in equation (Sa) approaches a 
constant that involves the exponential integral, El( - a) = f z- le' dz (tabulated 
in Abramowitz and Stegun 1972), 

) -InK + e"E1(-a) for - aK? 1 (Sc) 

With a negative average (or long-run) growth in a population under demographic 
stochasticity, the dominant term in the asymptotic scaling of average extinction 
time is proportional to the logarithm of carrying capacity, as in a population 
undergoing a deterministic decline. 

ENVIRONMENTAL STOCHASTICITY 

We model the effects of a changing environment by allowing the population 
growth rate to fluctuate with time as a stationary time series with mean growth 
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FIG. 1.-Average time to extinction under demographic stochasticity for a population 

initially at carrying capacity. Each curve represents a different value of the mean population 
growth rate, r. The sampling variance in fitness per individual per unit time due to demo- 
graphic stochasticity is VI = 1. Solid lines show the diffusion approximation (eq. [5a]), and 
dotted lines give asymptotic approximations (eqq. [5b], [5c]). 

rate r, environmental variance Ve, and no autocorrelation. Again assuming that 
equation (1) approximates a population reproducing at discrete intervals, we can 
use diffusion theory to analyze the process. The infinitesimal mean and variance 
of the diffusion process are 

pL(N) = TN and u2(N) = VeN2. (6) 

Transformation of the diffusion process to a logarithmic scale would yield the 
transformed infinitesimal mean and variance as -r - Ve/2 and Ve, respectively, in 
the domain 0 < ln N < ln K (Karlin and Taylor 1981, chap. 15.3). The expected 
value of the logarithm of population size then changes according to 

E[ln N(t)] = ln No + (- - Ve/2)t (7) 

in the density-independent region. For this reason, the quantity r = -r - Ve/2, 
termed the long-run growth rate, can be considered as a stochastic analogue of 
r in the deterministic model (see Tuljapurkar 1982; Lande and Orzack 1988). 
Discounting the mean growth rate because of random environmental fluctuations 
is explained by Lewontin and Cohen (1969) in terms of the finite rate of increase, 
er, the arithmetic mean of which determines the expected population size, 
whereas the smaller geometric mean determines the dynamics of extinction. For 
the diffusion approximation in equation (6), the logarithm of the expected popula- 
tion size is ln E[N(t)] = In No + -rt in the density-independent region., in contrast 
to equation (7). 
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From formula (3), the average time to extinction with environmental stochas- 
ticity is 

T(K) VeC ( n) K (8a) 

in which c = 2rl Ve - 1 = (2/Ve)f. Figure 2 shows how the mean extinction time 
increases with carrying capacity for different values of c. 

With a positive long-run growth rate, the average time to extinction scales 
asymptotically as a power function of the carrying capacity, 

T(K) 2Kcl(Vec2) for c ln K > 1. (8b) 

Ludwig (1976) showed for logistic population growth in a random environment 
that the asymptotic scaling of T(K) is proportional to Kc. Formulas in Leigh 
(1981) and Tier and Hanson (1981) are also in agreement with this scaling of mean 
extinction time. 

Goodman (1987b) derived a compatible result but assumed, inappropriately for 
environmental stochasticity, that r < Ve/2, which implies a negative long-run 
growth rate for the population (c < 0) and a less than linear scaling described 
below. Contrary to Goodman (1987a, 1987b), in a population subject to environ- 
mental stochasticity the average time to extinction can increase faster than lin- 
early with carrying capacity. In formula (8b), T(K) is linear when c = 1, curves 
downward when c < 1, and curves upward when c > 1. The scaling of average 
extinction time with carrying capacity is determined by the ratio of the mean 
growth rate to its variance and has positive curvature when 17lIe > 1. This only 
requires that the growth rate have a mean larger than its environmental variance. 

If the long-run growth rate is zero (f = 0 or c = 0), the average time to 
extinction depends on the square of the logarithm of carrying capacity, T(K) = 
(ln K)2/V e. Goodman (1987b) derived this formula, but under the incorrect condi- 
tion r = 0 instead of r = 0. When the mean growth rate is zero (r = 0 or c = 
- 1), the long-run growth rate is negative, r = - Ve/2, and the average time to 
extinction is nearly proportional to the logarithm of the carrying capacity. 

With a negative long-run growth rate in a population with environmental sto- 
chasticity, 

T(K) - lnK - 1/c fo - 1 K>, I (8c 

the dominant term in the average time to extinction is proportional to the loga- 
rithm of carrying capacity, in agreement with Ludwig (1976). 

RANDOM CATASTROPHES 

Large, infrequent perturbations such as sudden catastrophes must be modeled 
differently than with diffusion processes such as those used above to describe 
demographic and environmental stochasticity. Hanson and Tuckwell (1981) intro- 
duced a population-dynamic model in which catastrophes reduce the population 
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FIG. 2.-Average time to extinction under environmental stochasticity for a population 

initially at carrying capacity. The mean and variance of the population growth rate caused 
by a fluctuating environment are 

- 
and Ve. Each curve corresponds to a different value of 

c = 2i1Ve - 1. Solid lines display the diffusion approximation (eq. [8a]), and dotted lines 
are asymptotic approximations (eqq. [8b], [8c]). 

by a fixed proportion at random times. In their model the population grows deter- 
ministically between catastrophes with a logistic form of density dependence. 
They were unable to derive a complete analytical solution but presented numeri- 
cal results for some parameter values. Ewens et al. (1987) analyzed a similar 
model of catastrophes in a population with no density regulation. Here I show 
that, by modifying Hanson and Tuckwell's model to incorporate the form of 
density dependence in equation (1), an analytical solution can be obtained for the 
average time to extinction of a population subject to random catastrophes. 

Each catastrophe is assumed to reduce instantaneously the population by a 
proportion 8, that is, a population of size Njust prior to a catastrophe is reduced 
to size (1 - b)N just after the catastrophe. Catastrophes occur as a Poisson 
process with rate parameter X, so that the waiting time for a catastrophe has an 
exponential distribution, A- 1e -` with mean 1 /I, and the probability of i catastro- 
phes occurring in a time interval of length t is (Nt)Ye`t/i! for i = 0, 1, 2, . . . 
Between catastrophes the population grows at the constant per capita rate, r, 
until the carrying capacity, K, is reached (eq. [1]) or a catastrophe occurs. 

It is easiest to analyze this model in terms of the natural logarithm of population 
size, n = ln N. Then from an initial value of no = ln No, n grows linearly with 
time at the constant rate r, n(t) = nO + rt, until it reaches k = ln K or a catastro- 
phe strikes. Each catastrophe now reduces n by an additive amount, E = - ln 
(1 - b). Extinction occurs at n = ln 1 = 0. This type of process, with additive 
downward jumps of constant magnitude happening at random times, was studied 
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by Hanson and Tuckwell (1978). Starting from no, the average time until extinc- 
tion, denoted as T(no), obeys a differential-difference equation, 

r (n?)- XT(no) + XT(no- E) = -1 (9) 
dno 

for 0 < nO < k, with T(no) = 0 for no c 0. The boundary condition differs 
depending on whether r is positive or negative. For r > 0, the appropriate bound- 
ary condition is T(k) - T(k - E) = 1/A because the expected time to move from 
the stable point k to k - E is the expected waiting time until the next catastrophe, 
1/A. Then T(no) is discontinuous at the extinction boundary, n = 0, because 
starting from an infinitesimally small value, 0+, the population will grow and 
persist until a (series of) catastrophe(s) causes its extinction. When r is positive, 
the boundary condition at T(k) therefore determines T(O+) (Hanson and Tuckwell 
1978). When r is negative, the appropriate boundary condition is T(O+) = 0. 

Exact analytical solutions of equation (9) can be obtained using Laplace trans- 
forms (Churchill 1958; Bellman and Cooke 1963), as shown in the Appendix. The 
exact solutions are so complex as to be uninformative, except in facilitating the 
construction of graphs as in figure 3. Asymptotic analysis, also given in the Ap- 
pendix, produces approximate formulas that are more readily interpretable. An 
important parameter in both the exact and approximate solutions is the ratio of 
the catastrophe rate times catastrophe size to the population growth rate between 
catastrophes, y = XE/r. This parameter is closely related to the long-run growth 
rate of the population including catastrophes, f = r - XE. Another important 
parameter is the number of catastrophes from carrying capacity to extinction in 
the absence of population growth, k/E. 

Figure 3 depicts average times to extinction as a function of k/E. It can be seen 
for f > 0 (or 0 < y < 1) that ln(XT(k)) increases asymptotically as a linear function 
of k/E, so that XT(k) increases exponentially with k/E. For r < 0 (or 0 > y > 1), 
figure 3 (bottom) shows the asymptotic linear dependence of average extinction 
time on k/E. 

For y > 0, the asymptotic solution is 

XT(k) 1 (+ 0(1), (IOa) 

in which 1 is the solution of the transcendental equation P/(eP - 1) = y, and 
0(1) is a constant of order 1. 

When the long-run growth rate of the population is positive, 0 < y < 1, then 
1 is positive and the exponential term dominates in equation (10a). In this case 
1 gives the asymptotic slope of the lines in figure 3 (top). Because k = ln K, T(k) 
is asymptotically proportional to KP!E. The average time to extinction thus scales 
in proportion to a power of the carrying capacity and increases faster than linearly 
with K when 1 > E. For example, if each catastrophe reduces the population to 
e2 = 13.5% of its size just prior to the catastrophe, so that the catastrophe size 
on the logarithmic scale is E = - ln (e-2) = 2, then 1 > 2 when y < 0.313 or 
A/r < 0.157. Thus, the average time to extinction for a population subject to 
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FIG. 3.-Average time to extinction under random catastrophes for a population initially 
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in which X is the catastrophe rate, E is the catastrophe size on the logarithmic scale, and r 
is the growth rate of the population between catastrophes. In both graphs the abscissa gives 
the number of catastrophes from carrying capacity to extinction for a population with r = 
O (or y = ? o). Top, double logarithmic plot for positive long-run growth rates, r - XE > 
O (or 0 < y < 1). Bottom, semilogarithmic plot for negative long-run growth rates, r - XE 
< 0 (or 0 > y > 1). Solid lines are exact solutions (Appendix), and dotted lines give asymp- 
totic approximations (for y > 0, eq. [lOa] with 0(1) = 1, and for y < 0, eq. [lOc]). 
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infrequent catastrophes can easily increase much faster than linearly with car- 
rying capacity. 

When y > 1, the long-run growth rate is negative, and 1 is negative. In this 
case the exponential term in equation (lOa) is negligible if - r3k/E > 2, and the 
asymptotic solution becomes 

XT(k) 1 - (I y + 0(1). (lOb) 

When y < 0, the long-run growth rate is again negative, and the asymptotic 
solution is simply 

AT()X -y (e) k (lOc) 1 - -yE 

Thus, when the long-run growth rate is negative in a population subject to 
random catastrophes, 0 > y > 1, asymptotic formulas for the average extinction 
time are dominated by a linear function of k, which is a logarithmic function of 
carrying capacity, T(k) - (ln K)/F, as under demographic or environmental 
stochasticity (eqq. [5c], [8c]). 

DISCUSSION 

The average time to extinction of a population, starting from carrying capacity 
K, follows different scaling laws in response to demographic stochasticity, envi- 
ronmental stochasticity, or random catastrophes. When the long-run growth rate 
of the population is positive, the scaling relationships are as follows. With demo- 
graphic stochasticity the per capita growth rate fluctuates because of sampling 
effects caused by finite population size. The average time to extinction increases 
almost exponentially with carrying capacity, in proportion to eaKIK, where a = 
2H/VI, in which -r and VI are, respectively, the mean Malthusian fitness and its 
variance among individuals. The nearly exponential scaling of mean time to ex- 
tinction with increasing K under demographic stochasticity alone is consistent 
with results of previous authors (MacArthur and Wilson 1967; Richter-Dyn and 
Goel 1972; Leigh 1981; Gabriel and Burger 1992). 

Under environmental stochasticity the per capita growth rate fluctuates with 
temporal changes in the environment. The average extinction time scales as a 
power of the carrying capacity, proportional to KC, where c = 2rlVe - 1, in 
which T and Ve are, respectively, the mean and environmental variance in r. The 
average extinction time therefore scales faster or slower than linearly with K, 
depending on whether r/Ve is greater than or less than one. Positive (upward) 
curvature of the scaling relationship only requires that -r > Ve. Formulas in Leigh 
(1981) and Tier and Hanson (1981) are consistent with the scaling of mean extinc- 
tion time as a power function of K under environmental stochasticity. 

Goodman's (1987b) formulas are also consistent with this scaling law, but he 
claimed that with environmental stochasticity the average extinction time always 
scales less than linearly with carrying capacity (c < 1), which implies that only 
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extremely large populations are likely to persist for long periods in a fluctuating 
environment. Goodman's erroneous conclusion traces to an inappropriate anal- 
ogy between environmental stochasticity and the classical birth-death model of 
demographic stochasticity and his assumption that -r < Ve/2, which implies that 
the long-run growth rate of the population, -r - V,/2, is negative. If this assump- 
tion were generally valid, few, if any, species would exist today. 

It is nevertheless true that, in sufficiently large populations, environmental 
stochasticity poses a greater risk of extinction than demographic stochasticity. 
This conclusion follows intuitively from the fact that the importance of demo- 
graphic stochasticity in causing fluctuations in population growth rate, r, is in- 
versely proportional to population size, whereas fluctuations in r caused by envi- 
ronmental stochasticity may be independent of population size. In the present 
models with a positive long-run growth rate, the average time to extinction under 
demographic stochasticity, proportional to eaK/K, increases with K faster than 
that under environmental stochasticity, proportional to Kc = eclnK, regardless of 
the constants of proportionality or the values of a and c. If the per capita growth 
rate has a mean larger than its variance ( > Ve or c > 1), the average persistence 
time under environmental stochasticity may be extremely long, even for popula- 
tions of modest size. 

Under random catastrophes, the long-run growth rate of the population, r - 
XE, is positive when the growth rate between catastrophes, r, exceeds the catas- 
trophe rate, X, multiplied by the catastrophe size on the natural logarithmic scale, 
E. In this case, the average time to extinction scales in proportion to KIE , where 
E is the solution of an equation involving y = XE/r (see eq. [lOa]). This scaling 
is more than linear when the exponent is greater than one, or I > E. The average 
persistence time of a population subject to infrequent catastrophes can easily 
increase much faster than linearly with carrying capacity. Consequently, a popu- 
lation of modest size may persist for a long time in the presence of random 
catastrophes, if its long-run growth rate is positive. This analytical conclusion 
confirms previous numerical results obtained by Hanson and Tuckwell (1981) for 
a population with logistic growth subject to random catastrophes. 

Because average persistence times scale as power functions of carrying capac- 
ity under both environmental stochasticity and random catastrophes, no general 
statement can be made about which is more important in large populations. Their 
relative importance depends on the values of several parameters in addition to 
carrying capacity, which in the present models are the mean and environmental 
variance of per capita growth rate and the magnitude and frequency of catastro- 
phes. The similarity of the scaling laws for extinction risks under environmental 
stochasticity and random catastrophes makes intuitive sense when catastrophes 
are viewed as extreme manifestations of a fluctuating environment. 

In the random catastrophe model analyzed by Ewens et al. (1987) the logarith- 
mic scaling of average persistence time with population size is a consequence of 
their assumption that the long-run growth rate of the population is negative. This 
assumption was necessary in their density-independent model in order for even- 
tual extinction to be a certain event. With density dependence, as in the present 
catastrophe model or that of Hanson and Tuckwell (1981), eventual extinction is 
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certain even for a population with a positive long-run growth rate below carrying 
capacity. 

The present analysis demonstrates that Goodman (1987a, 1987b), Ewens et al. 
(1987), and Shaffer (1987) seriously overestimated the risks of population extinc- 
tion from environmental stochasticity and random catastrophes, as did Soule and 
Kohm (1989), Pimm and Gilpin (1989), and Hedrick and Miller (1992). Prevailing 
views regarding the persistence of populations under environmental stochasticity 
or random catastrophes have been too pessimistic, at least for populations with 
a positive long-run growth rate. Empirical evidence may ultimately accumulate 
to indicate that random catastrophes pose a greater risk of population extinction 
than does environmental stochasticity. The only general statement supported by 
existing theory is that in sufficiently large populations demographic stochasticity 
is a less important cause of extinctions than either environmental stochasticity 
or random catastrophes. 

Unfortunately, for many species threatened with extinction, long-run growth 
rates of populations are near zero or negative. For populations with a negative 
long-run growth rate, regardless of the stochastic factors involved, the average 
time to extinction scales with the natural logarithm of the carrying capacity, 
divided by the long-run rate of population decline, as previously noted by Ludwig 
(1976) and Brockwell (1985) for different forms of stochasticity and density depen- 
dence. Thus, a large initial size does little to extend the average lifetime of a 
population with a negative long-run growth rate. 

The present results are based on a simple model of density-independent popula- 
tion growth below carrying capacity. They are, however, in qualitative agreement 
with analytical results of Ludwig (1976), Leigh (1981), and Tier and Hanson (1981) 
for demographic and environmental stochasticity and numerical results of Hanson 
and Tuckwell (1981) for random catastrophes, under the logistic model of density 
dependence. This concordance suggests that the qualitative scaling relationships 
and relative risks of extinction described here are likely to be general and robust 
properties of the dynamics of single-population models. 
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APPENDIX 
ANALYSIS OF RANDOM CATASTROPHES 

Solution of the random catastrophe model is simplified by the transformations x = 
no0E and T(x) = XT(no), so that the catastrophe size becomes one and the mean time to 
extinction is scaled in units of the mean waiting time between catastrophes. Equation (9) 
becomes 

dT(x) - yT(x) + yT(x - 1) = -y for O < x < k/E, (Al) 
dx 
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with T(x) = 0 for x c 0. The parameter y = XE/r gives the ratio of the magnitude of the 
expected rate of change of n from catastrophes to the population growth rate between 
catastrophes. For y 2 0 the boundary condition is T(k/E) - (k/E - 1) = 1, whereas for 
,y < 0 the boundary condition is T(0) = 0. 

EXACT SOLUTION USING LAPLACE TRANSFORM 

Denote the Laplace transform of T(x) as T(s) = f'e-sT(x)dx, where s is a complex 
variable. Applying the Laplace transform to equation (Al) using the tables in Churchill 
(1958) yields 

i(s - I/S + T(0') 
s - y(l - e-) (A2) 

The denominator can be expanded as a power series in (,y/s)(l - e-s), and (1 - e-s)m 
can be expanded using the binomial theorem, which gives 

T(S) = S E> (r Ef (7J ) (-1)iejs. (A3) 

The inverse Laplace transform of s-m-lei-s is U(x - j)(x - j)m/m!, where U(x - j) is 
the unit step function, which is zero for x < j and one for x > j. Taking the inverse Laplace 
transform of equation (A3) and interchanging the order of summation, we have 

T(X) = E j1' {-YE2A(X) + T(O) B(x)} U(X -j), (A4) 

where 
00 

B (X) = Z (m7)(X -j)m 

ad= y(X - j)eI(x-i) 
= '~~~~'ym 

Y 
(x j)Pfl+ and 

A (m - -j)! m + I 

- X YB(X) dx 

- (I1)hi!Y1{-1 + ey(xi-j) Y)(X -J)i} 
i=O 

Substituting the final forms of these summations back into equation (A4), the solution is 

T(x) = [x] + 1 + A(x) + T(0+)B(x), (A5) 
in which [x] is the integer part of x, for example, [e] = 2, and 

A(x) = - 1ey(xij) 1 ( -Y)i j)i (A6) 
j=O i=O 

B(x) = E (eY) ( ' ye(x-j). (A7) 
j=O 
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When y is negative, the boundary condition at x = 0+ causes the last term in equation 
(A5) to vanish, whereas when y is positive, the boundary condition at x = k/E determines 
the initial value 

T = -A(kE) + A(k/E - 1) (8 (?+) =B(W/E) - B(k- 1) (A8) 

The average times to extinction for a population starting at carrying capacity, with 'y 
positive, negative, or zero, are as follows. For 0 < -y < + oo, 

AT(k) = [k/E] + 1 + A(k/E) + T(0 - )B(k/E) (A9a) 
For - oo < y < 0, 

AT(k) = [k/E] + 1 + A(k/E). (A9b) 
For y = + oo (or r = 0), equation (Al) reduces to a difference equation with the solution 

AT(k) = [k/E] + 1. (A9c) 
A high degree of precision is required for numerical evaluation of the exact solutions. 

Figure 3 was computed with 100 significant digits to evaluate the summations, using Mathe- 
matica (Wolfram 1991). 

APPROXIMATE SOLUTION BY ASYMPTOTIC METHODS 

Figure 3 indicates that the asymptotic form of T(k/E) is exponential for a positive long-run 
growth rate, r - XE > 0, and linear for a negative long-run growth rate, r - XE < 0. To 
obtain the asymptotic behavior of T(k/E) with increasing kIE, we must first derive the 
asymptotic form of T(x) with increasing x for a fixed value of kIE. We try a solution to 
equation (Al) of the form 

T(x) xe-x + ax + b, (AIO) 
where ox, 3, a, and b are constants to be determined. Substituting formula (AIO) into 
equation (Al) gives 

-00 - y(eO - l)}e-x + a(l - y) = -y. (A1) 

Validity of the solution for all 0 < x < k/E requires that 

e = y(eO - 1) and a = -y/(l - y). (A12) 
This transcendental equation for 3 admits a real solution only if 'y 2 0. If 'y < 0, then we 
must set cx = 0, and equation (AIO) becomes linear. The boundary condition for 'y 2 0, 
along with equation (A12), determines the constant 

a= 7 e k/E for y > 0. (A13) 

The last constant can be determined with a small error by requiring (somewhat arbitrarily) 
for a population with y > 0 and kIE = 0+ that T(0+) = O(1), which is a constant of order 
1, giving 

b= -o + O(l). (A14) 
Thus, for y > 0 the mean time to extinction starting from x is 

T(X) 1 _ y{e(k/E e ) - x + 0(1)- (Al5a) 

Note that y = 1 is a singular point for the asymptotic solution, which separates two 
domains of behavior. For 0 < y < 1, 3 is positive and the exponential terms dominate for 
sufficiently large x. The mean extinction time is then almost independent of the initial 
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population size (provided that rx > 1) and nearly equal to that starting at the carrying 
capacity, 

T(k/E) (K 1 - + 0(1) (Al5b) 

For y > 1, P is negative and the linear terms in equation (Al5a) dominate when 
- 3x? 1, 

T(k/E)~ _/y (e + I + 0(1). (Al6a) 

For y < 0, cx = 0 in equation (Al 1), and the final constant can be determined with a 
small error by requiring for a population with k/E = O+ that T(O) = 0 (since r is negative), 
giving b = 0, and 

T(x) '-Y x. (Al6b) 1 Y 
Thus, when 0 > y > 1, the asymptotic form of the mean extinction time is linear for large 
k/E. 
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