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I. Spatial ecology: why?
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Spatial ecology: models
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II: Spatial competition

• Competition-colonization trade-offs in

continuous space

• Moment equations

• Beyond competition-colonization
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Diversity & spatial heterogeneity in plant
communities

• The paradox of diversity: why are there so many species?

• Plants: one trophic level, few limiting resources, sessile

• Coexistence via spatial/temporal heterogeneity: gradients or

patches, exogenous or endogenous

• Competition-colonization tradeoffs or similar explanations
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Spatial plant competition: strategies

• Colonization (ruderal)

• Exploitation (successional niche,
competitive)
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K-selected,
phalanx,
low-R∗)
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Model: cartoon
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Model: stochastic processes

Event Result Rate
birth N(x) → N(x) + 1

∫
Ω

fN(y)D(|y − x|)ωdy
death N(x) → N(x)− 1 N(x)

(
µ + α

∫
Ω

N(y)U(|y − x|)dy
)
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Competition-colonization trade-offs in a
simulator

Many different models of CC share similar mechanisms.

• One species competes better, the other colonizes better

(disperses farther/higher fecundity)

• For CC, the better competitor must leave open space in the

environment in monoculture
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Competition-colonization: invasion sequence
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Competition-colonization: invasion dynamics
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Moment equations: beyond
competition-colonization

• Define spatial covariance

• Using stochastic equation for rates (from simulator)

– Mean: derive expected change in population density

– Covariance: derive expected change in spatial covariance

– Close the system—truncate higher moments

• Analyze spatial population dynamics
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Spatial covariance

cij(|x− y|) = 〈(ni(x)− n̄i) · (nj(y)− n̄j)〉

Positive covariance ⇐⇒ clustering/association

Zero covariance ⇐⇒ random (Poisson)

Negative covariance ⇐⇒ evenness/segregation
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Spatial covariance
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Moment closure

What about higher moments? Closure rules

• non-spatial/independent:

pabc = papbpc

• power-1: pabc =
(papbc + pbpac + pcpab)/3

• power-2:

pabc =
(

pabpac
pa

+ . . .
)

/3
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Moment equations: mean density

dni

dt
= rini

1−

neighborhood density︷ ︸︸ ︷
(ni +

clustering︷ ︸︸ ︷
c̄ii/ni ) +αij

neighborhood density︷ ︸︸ ︷
(nj +

segregation︷ ︸︸ ︷
c̄ij/ni )

Ki


[c̄ij is the weighted covariance: c̄ij ≡

∫
Uij(x)cij(x) dx]

plus equations for the changes in covariances

c11(r), c12(r), c22(r) over time. 17



Moment equations: cross-covariance

∂cij(r)
∂t

= −(µ′
i + µ′

j)cij(r)︸ ︷︷ ︸
random thinning

+ fi(Di ∗ cij)(r) + fj(Dj ∗ cij)(r)︸ ︷︷ ︸
clustering

−
∑

k

[αik (ni(Uik ∗ cjk)(r) + nkcij)]

−
∑

k

[αjk (nj(Ujk ∗ cik)(r) + nkcij)]

− ninj(αijUij(r) + αjiUji(r))︸ ︷︷ ︸
density-dependent thinning
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Competition-colonization: predicted vs actual
dynamics
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Invasion criteria

Resident at equilibrium; invader at low density; spatial

structure at quasi-equilibrium:

invasion rate = rIηIR︸ ︷︷ ︸
non-spatial inv. rate

− αII
c̄II

nI︸ ︷︷ ︸
invader clustering

+ αIR
c̄RR

nR︸ ︷︷ ︸
resident clustering

+αIR

(
−c̄IR

nI

)
︸ ︷︷ ︸
spatial segregation

> 0

Try to partition contributions to invasion speed from different

strategies . . .
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Intrinsic reproductive number: R = f
µ

• appears in stochastic and spatial models

• determines sensitivity to competition: reduction in fecundity

between empty habitat (R) and equilibrium density (1)

• large R helps in spatial competition—more offspring (even

if most die) give better sampling of the environment
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Low fecundity: RR = RI = 1.2
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High fecundity: RR = RI = 10
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Short-dispersal strategies

Short dispersal can aid invasion/coexistence . . .

• Requires strong segregation and weak clustering (helps if

both species have high R)

• Further partition strategies:

– Successional niche: fast growth (high r), small individuals

(large K)

– Phalanx strategy: independent of r and K, but requires

strong interspecific competition (‘founder control” region)
24



Successional niche: invasion sequence
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Are these strategies real?

Strategies are similar across model types: relative

strength of strategies varies according to details

• Model-based tests of spatial coexistence

• Experimental tests of colonization limitation

How do we test for different strategies?
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Experiments: comp-col. (CC) vs. successional
niche (SN)

randomize sp. 1 randomize sp. 2 conclusion

— 2 ↑, 1 ↓ sp. 1 maintained by CC

1 ↑, 2 ↓ — sp. 2 maintained by CC

1 ↓ — sp. 1 maintained by SN

— 2 ↓ sp. 2 maintained by SN

1 ↓ 2 ↓ phalanx/spatial

segregation
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Spatial competition: conclusions

• Spatial ecological dynamics as spatial covariance

dynamics

• Strategies (CC, SN, phalanx) partition spatial

variance

• Empirical work in progress: still don’t know

where/how spatial coexistence occurs
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III. Moment equations: other applications

• Spatial epidemics

• Habitat degradation and refuge use

• Spatial synchrony
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Spatial epidemics

• Within-field patchy epidemics: multiple foci

• How does host clustering affect spread?
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Epidemics: susceptible-infective (SI) covariance
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Experimental data: Burdon & Chilvers
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Spatial epidemics: conclusions

• Infective patchiness builds up over time; initially

accelerates but then decelerates the epidemic

(“burn-out” of clusters).

• (Brown) with Poisson-distributed hosts, local

dispersal always increases the epidemic threshold;

with clustered hosts, intermediate dispersal

distance maximizes disease invasion
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Refuge use

(Skole and Tucker Science 1991)

• Habitat destruction,

degradation, and

fragmentation

• How do spatial

pattern and dispersal

affect population

viability?
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Habitat degradation: results

Average mortality rate

E
qu

ili
br

iu
m

 d
en

si
ty

1 2 3 4 5 6 7

0
5

10
15

20

●

●

●

●

●

●

●
●
●

●

●

●

●

Simulation
moment equations
non−spatial
Homog. environment
Habitat association only

35



Refuge use: conclusions

• Short dispersal is advantageous (at first) in

structured landscapes

• low-R species actually do better

• Caveats: fragmentation, temporal variation; need

more detail for reliable predictions
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Spatial synchrony

Large-scale synchronization in populations: why?

• Moran effect: spatial variation in (e.g.) weather

drives spatial synchrony with the same pattern

• dispersal linkage

• nomadic predators
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(Peltonen et al. 2002)
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Deconvolution

Spatial pattern with dispersal and environmental

variability:

c̃pop =
c̃env

γ + D̃

• Separate exogenous and endogenous patterns by

calculating spectra

• Very preliminary, but offers a way of partitioning
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Conclusions

• Moment equations: a nice tool (with limitations)

• Reveal generality of spatial mechanisms, unify

dynamics in patchy and continuous landscapes

• Many extensions: heterogeneity, different

ecological settings; open mathematical questions?

• May bridge the gap between simulators and

analytic theory
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IV. Meta-ecology

• tools vs. questions

• qualitative vs. quantitative (statistical) questions

• theoretical ecologists: hosts, parasites, or

mutualists?
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