Stochastic processes 101 (in R)

May 16, 2005

Remember: Type q() (not just g by itself), or go to File/Quit in the menu
bar, to quit R. In R, # signifies a comment. Any line beginning with #, or
anything after # on a line, is simply ignored.

1 Waiting times and demographic stochasticity

A process running Recall from lecture 1 that a simple birh death process gives
rise to exponentially distributed waiting times until the next birth/death. plot
exponential distribution, with a rate of 0.5

Sequence of candidate waiting times:

> wtime = seq(0, 20, by = 0.1)

Calculate the probability of each waiting time given a rate of 0.5 (i.e., 50%
probability per unit time of occurrence) or of 0.3:

dexp (wtime, rate = 0.5)
0.3)

> probl
> prob2 = dexp(wtime, rate

> plot(wtime, probl, type = "1", xlab = "waiting time", ylab = "probability")
> lines(wtime, dexp(wtime, 0.3), col = 2)
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The second line is equivalent to any of the following:

> lines(wtime, prob2, col = 2)
> lines(wtime, prob2, col = "red")
> curve(dexp(-0.3 * x), add = TRUE, col = 2)

Problem 1: Assume density-independent population growth in a population
of 100 individuals, where per capita birth rate is 0.5 and per capita death rate
is 0.3. (a) Use rexp() to calculate the probability that the next event is a birth.
(b) what would the death rate need to be for there to be a 30% chance that the
next event is a birth. (hint loop over a sequence % of death rates)

Simple epidemic under demographic stochasticity:

Simulate a simple epidemic for 10,000 events under demographic stochastic-

.events <- 1000

= rep(NA, n.events)

= rep(NA, n.events)
rep(NA, n.events)
timing = rep(NA, n.events)
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Set the initial population size and time (0):

> S[1] = 100
> I[1] =2
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R[1] =0
timing[1] = 0

Set parameters:

beta = 0.5
alpha = 1
gamma = 1

Simulate the time series (starting at time step 2, ending at n.events)

for (t in 2:n.events) {
if (It - 1] ==0) {
warning ("epidemic ended before max time steps')
break
}
if (S[t - 1] ==0) {
inf.rate = 0

inf.time = Inf

}

else {
inf.rate = beta * S[t - 1] * I[t - 1]
inf.time = rexp(l, inf.rate)

}

I.death.rate = alpha * I[t - 1]
I.death.time = rexp(l, I.death.rate)
recovery.rate = gamma * I[t - 1]
recovery.time = rexp(l, recovery.rate)
elapsed.t = min(inf.time, I.death.time, recovery.time)
if (elapsed.t == inf.time) {
S[t] = S[t - 1] - 1
Ift] =1I[t - 1] + 1

R[t] = R[t - 1]

}

else if (elapsed.t == I.death.time) {
S[t] = S[t - 1]
Ift] =I[t-1] -1
R[t] = R[t - 1]

}

else {
S[t] = St - 1]
Ift] =I[t-1] -1
R[t] = R[t - 1] + 1

}

timing[t] = timing[t - 1] + elapsed.t
}

Plot the results:



> plot(timing, S, type = "b", xlab "Day", ylab = "Susceptibles")
> lines(timing, I, type = "b", col = 2)

> lines(timing, R, type = "b", col = 3)
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This is equivalent to:

> matplot(timing, cbind(S, I, R), type = "b", xlab = "Day", ylab = "Susceptibles",
+ pch = 1)

Plotting with a logarithmic time scale shows the initial stages of the epidemic
more clearly:

> matplot(timing, cbind(S, I, R), type = "b", log = "x", xlab = "Day",
+ ylab = "Susceptibles", pch = 1)
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Of course, we could also just explicitly restrict

> matplot(timing, cbind(S, I, R), type = "b", xlim = c(0, 0.1),
+ xlab = "Day", ylab = "Susceptibles", pch = 1)
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