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The SEIR model

The classic model for microparasite dynamics is the flow of hosts between Susceptible, Exposed (but not
infectious) Infectious and Recovered compartments (Figure 1(a)). This leads to the following standard
formulation of the SEIR model

dS

dt
= µ(N [1− p]− S)− βIS

N
(1)

dE

dt
=

βIS

N
− (µ + σ)E (2)

dI

dt
= σE − (µ + γ)I (3)

dR

dt
= γI − µR + µNp, (4)

which makes a number of key biological assumptions:

� The basic SEIR model represents infection dynamics in a total population of size N , with a natural
’background’ death rate of all individuals balanced by a birth rate µN : from the sum of equations 2-4,
dN/dt = 0 and N = S + E + I + R is thus constant.

� The infection cause acute morbidity (not mortality); That is, relative to the lecture notes, we ignore
disease induced mortality. This is reasonable for certain infections (like human measles) but not other
examples (Dave will elaborate on Rabies tomorrow).

� Individuals are recruited directly into the susceptible class at birth.

� Transmission of infection from infectious to susceptible individuals is controlled by a bilinear contact
term βIS

N . This is the simplest model for mass action transmission in a homogeneously-mixed host
population. In particular, the scaling by population size (N) makes the reproduction ratio proportional
to the local density of contacts and independent of population size.

� In the SEIR model, Infected individuals move into the Exposed (not infectious) class after an average
incubation period 1/σ and subsequently (if they escape natural mortality) through the infectious class
after an average time 1/γ. This deterministic approximation assumes an exponential distribution of
incubation and infectious periods; though a tractable approximation for exploring overall dynamics,
the observed duration of infection periods are of then much more nearly constant.

� The model assumes that recovered individuals are immune from infection (strictly to the ability to
retransmit) for life;

In the absence of vaccination, the basic reproductive ratio, R0, is σ
σ+µ

β
γ+µ .
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Figure 1: The SEIR flow diagram. Apart from vaccination, flows represent per capita flows from the donor
compartment.

Numerical integration in R

We can use R to numerically integrate the SEIR model. We first define the grid of time step, parameters,
and the starting conditions:

> times = seq(0, 10, by = 1/52)

> paras = c(mu = 1/75, N = 1, p = 0, beta = 1250, sigma = 365/7,

+ gamma = 365/7)

> xstart = c(S = 0.06, E = 0, I = 0.001, R = 0)

and the function for the equation systems.

> seirmod = function(t, x, params) {

+ S = x[1]

+ E = x[2]

+ I = x[3]

+ R = x[4]

+ with(as.list(params), {

+ dS = mu * (N * (1 - p) - S) - beta * S * I/N

+ dE = beta * S * I/N - (mu + sigma) * E

+ dI = sigma * E - (mu + gamma) * I

+ dR = gamma * I - mu * R + mu * N * p

+ res = c(dS, dE, dI, dR)

+ list(res)

+ })

+ }

To solve the ode’s we need to use the odesolve library:

> library(odesolve)

Now integrate:

> out = as.data.frame(lsoda(xstart, times, seirmod, paras))
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and plot as time series or as a phase space plot:

> par(mfrow = c(1, 2))

> plot(times, out$I, ylab = "infected", xlab = "time")

> plot(out$S, out$I, ylab = "infected", xlab = "susceptible")

0 2 4 6 8 10

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

time

in
fe

ct
ed

0.030 0.045 0.060

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

susceptible

in
fe

ct
ed

Time series analysis

Spectral analysis and autocorrelation functions (ACF) are standard decriptive tools for time series analysis.
ACF’s calculates serial correlations at different time lags. For illustration, we can apply this to the (weekly)
time series of prevalence that we generated above. In R we can do this for, say, lags up to 3 years (=156
weeks) by:

> par(mfrow = c(1, 1))

> acf(out$I, lag.max = 156)
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The positive correlation at around 150 weeks gives an idea of a roughly 3 year periodicity in epidemic
dynamics.

Periodograms (a type of spectral analysis) is a more direct way of estimating and testing for significant
periodicity. The periodogram decomposes a time series into waves of different frequencies (frequency =
1/period). The importance of each frequency is measured by the spectral amplitude. We use the spectrum-
function to calculate the periodogram for the epidemic series. Before we do this it is useful to generate a
slightly longer simulation:

> times = seq(0, 25, by = 1/52)

> out2 = as.data.frame(lsoda(xstart, times, seirmod, paras))

> par(mfrow = c(1, 2))

> my.spec = spectrum(out2$I)

> plot(1/my.spec$freq, my.spec$spec, type = "b", xlab = "period",

+ ylab = "amplitude")
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This analysis gives a clear illustration of the interepidemic period.

0.1 *special interest: wavelets

A recent extension of spectral analysis are the so-called Wavelet spectra that allows one to add a time axis
to the periodogram (and therefore to allow one to study nonstationarities). In R, wavelet spectra can be
done using the Rwave-library.

Here is some critical background on wavelet analysis. The classical periodograms will automatically
estimate the spectrum of a time series (of length T) at at the following T/2 frequencies: { 1

T , 2
T , . . . , T/2

T }
(or equivalently periods: {T, T

2 , . . . , 2}. Wavelets, in contrast, do not have such ’canonical’ periods for
decomposition. If we use the Morlet wavelet, which is provided by the cwt-function, we therefore need
to specify the candidate periods through specifying the number of octaves, no, and voices, nv. With,
say, 8 octaves the main periods will be {21, 22, . . . , 28} = {2, 4, . . . , 256}. The number of voices specifies
how many subdivisions to estimate within each octave. With, say, 4 voices the resultant periods will be
{21, 21.25, 21.5, 21.75, 22, 22.25, . . .}. Armed with this we can now do the analysis:

> library(Rwave)

Attaching package 'Rwave':

The following object(s) are masked from package:stats :

kernel
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> par(mfrow = c(2, 1))

> plot(times, out2$I, xlab = "time", ylab = "infected")

> no = 8

> nv = 16

> a = 2^seq(1, no + 1 - 1/nv, by = 1/nv)

> wfit = cwt(out2$I, no, nv, plot = F)

> wspec = Mod(wfit)

> image(x = times, wspec, col = gray((12:32)/32), y = a/52, ylim = c(0,

+ 4), ylab = "year")

> contour(x = times, wspec, y = a/52, ylim = c(0, 4), zlim = c(mean(wspec),

+ max(wspec)), add = TRUE)
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We see that the interepidemic period is initially 3 years, but then decreases as the system converges
towards the stable endemic equilibrium. We can see this clearly if we compare the the wavelet spectrum at,
say, time 100 (full line) and time 1000 (dotted line):

> plot(a, wspec[100, ], type = "l")

> lines(a, wspec[1000, ], type = "l", lty = 2)

1 Measles

The biweekly incidence (number of cases for each two-week period) of measles has a long history in the study
of infectious disease dynamics. The data set meas.csv contains the records from London between 1944 and
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1966:

> meas = read.table("meas.csv", sep = ",", header = TRUE)

> names(meas)

[1] "year" "week" "time" "London" "B"

The incidence are accessed as meas$London. In addition, the data set contain columns reporting meas$year,
meas$month, the two combined into meas$time, the incidence (meas$London), and biweekly number of births
(meas$B).

> plot(meas$time, meas$London, type = "b")
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We can use the time series methods to analyze the measles incidence data:

> no = 8

> nv = 16

> a = 2^seq(1, no + 1 - 1/nv, by = 1/nv)

> wfit = cwt(meas$London, no, nv, plot = F)

> wspec = Mod(wfit)

> par(mfrow = c(2, 1))

> image(x = meas$time, wspec, col = gray((12:32)/32), y = a/26,

+ ylim = c(0, 3), ylab = "year")

> contour(x = meas$time, wspec, y = a/26, ylim = c(0, 3), nlevels = 6,
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+ zlim = c(mean(wspec), max(wspec)), add = TRUE)

> plot(meas$time, meas$B, type = "l")
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Historical measles in-
cidence clearly exhibited a mixture of annual and biennial (two year) cycles; The two year cycles were more
pronounced when birth rates were low. The early high birth rate years were associated with annual epidemics.

8


