2 Exploratory Data Analysis and Graphics

This chapter covers both the practical details and the broader philosophy of (1)
reading data into R and (2) doing exploratory data analysis, in particular, graph-
ical analysis. To get the most out of the chapter you should already have some
basic knowledge of R’s syntax and commands (see the R supplement of the previous
chapter).

2.1 Introduction

One of the basic tensions in all data analysis and modeling is how much you have
all your questions framed before you begin to look at your data. In the classical
statistical framework, you’re supposed to lay out all your hypotheses before you
start, run your experiments, come back to your office and test those (and only
those) hypotheses. Allowing your data to suggest new statistical tests raises the risk
of “fishing expeditions” or “data-dredging”—indiscriminately scanning your data
for patterns.* Data-dredging is a serious problem. Humans are notoriously good at
detecting apparent patterns even when they don’t exist. Strictly speaking, interesting
patterns that you find in your data after the fact should not be treated statistically, only
used as input for the next round of observations and experiments.” Most statisticians
are leery of procedures like stepwise regression that search for the best predictors
or combinations of predictors from among a large range of options, even though
some have elaborate safeguards to avoid overestimating the significance of observed
patterns (Whittingham et al., 2006). The worst aspect of such techniques is that in
order to use them you must be conservative and discard real patterns, patterns that
you originally had in mind, because you are screening your data indiscriminately
(Nakagawa, 2004).

* “Bible codes,” where people find hidden messages in the Bible, illustrate an extreme form of data-
dredging. Critics have pointed out that similar procedures will also detect hidden messages in War and
Peace or Moby Dick (McKay et al., 1999).

T Or you should apply a post hoc procedure [see ?TukeyHSD and the multcomp package in R] that
corrects for the fact that you are testing a pattern that was not suggested in advance—however, even these
procedures apply corrections only for a specific set of possible comparisons, not for all possible patterns
that you could have found in your data.

“Bolker” — 1/9/2008 — 15:39 — page 29

30 ¢ CHAPTER 2

But these injunctions may be too strict for ecologists. Unexpected patterns in
the data can inspire you to ask new questions, and it is foolish not to explore your
hard-earned data. Exploratory data analysis (EDA; Tukey, 1977; Cleveland, 1993;
Hoaglin et al., 2000, 2006) is a set of graphical techniques for finding interesting
patterns in data. EDA was developed in the late 1970s when computer graphics first
became widely available. It emphasizes robust and nonparametric methods, which
make fewer assumptions about the shapes of curves and the distributions of the
data and hence are less sensitive to nonlinearity and outliers. Most of the rest of
this book will focus on models that, in contrast to EDA, are parametric (i.e., they
specify particular distributions and curve shapes) and mechanistic. These methods
are more powerful and give more ecologically meaningful answers, but they are also
susceptible to being misled by unusual patterns in the data.

The big advantages of EDA are that it gets you looking at and thinking about
your data (whereas stepwise approaches are often substitutes for thought), and that
it may reveal patterns that standard statistical tests would overlook because of their
emphasis on specific models. However, EDA isn’t a magic formula for interpreting
your data without the risk of data dredging. Only common sense and caution can
keep you in the zone between ignoring interesting patterns and overinterpreting them.
It’s useful to write down a list of the ecological patterns you’re looking for and how
they relate your ecological questions before you start to explore your data, so that you
can distinguish among (1) patterns you were initially looking for, (2) unanticipated
patterns that answer the same questions in different ways, and (3) interesting (but
possibly spurious) patterns that suggest new questions.

The rest of this chapter describes how to get your data into R and how to make
some basic graphs in order to search for expected and unexpected patterns. The text
covers both philosophy and some nitty-gritty details. The supplement at the end of
the chapter gives a sample session and more technical details.

2.2 Getting Data into R

2.2.1 Preliminaries

ELECTRONIC FORMAT

Before you can analyze your data you have to get them into R. Data come in a variety
of formats—in ecology, most are either plaintext files (space- or comma-delimited)
or Excel files.* R prefers plaintext files with “white space” (arbitrary numbers of
tabs or spaces) or commas between columns. Text files are less structured and may
take up more disk space than more specialized formats, but they are the lowest
common denominator of file formats and so can be read by almost anything (and,
if necessary, examined and adjusted in any text editor). Since a wide variety of text
editors can read plaintext formats, they are unlikely to be made obsolete by changes

* Your computer may be set up to open comma-delimited (.csv) files in Excel, but underneath they
are just text files.

“Bolker” — 1/9/2008 — 15:39 — page 30

EXPLORATORY DATA ANALYSIS o 3

in technology (you could say they’re already obsolete), and less likely to be made
unusable by corruption of a few bits of the file; only hard copy is better.*

R is platform-agnostic. While text files do have very slightly different formats
on Unix, Microsoft Windows, and Macintosh operating systems, R handles these
differences. If you later save data sets or functions in R’s own format (using save
to save and load to load them), you will be able to exchange them freely across
platforms.

Many ecologists keep their data in Excel spreadsheets. The read.x1ls function
in the gdata package allows R to read Excel files directly, but the best thing to do
with an Excel file (if you have access to a copy of Excel, or if you can open it in
an alternative spreadsheet program) is to save the worksheet you want as a .csv
(comma-separated values) file. Saving as a . csv file will also force you to go into the
worksheet and clean up any random cells that are outside of the main data table—R
won’t like these. If your data are in some more exotic form (e.g., within a GIS or
database system), you’ll have to figure out how to extract them from that particular
system into a text file. There are ways of connecting R directly with databases or GIS
systems, but they’re beyond the scope of this book. If you have trouble exporting data
or you expect to have large quantities of data (e.g., more than tens of thousands of
observations) in one of these exotic forms, read the R Data Import/Export Manual,
which is accessible through Help in the R menus.

METADATA

Metadata is the information that describes the properties of a data set: the names
of the variables, the units they were measured in, when and where the data were
collected, etc. R does not have a structured system for maintaining metadata, but it
does allow you to include a good deal of this metadata within your data file, and it
is good practice to keep as much of this information as possible associated with the
data file. Some tips on metadata in R:

e Column names are the first row of the data set. Choose names that
compromise between convenience (you will be typing these names a lot)
and clarity; larval_density or larvdens is better than either x or
larval_density_per_m3_in_ponds. Use underscores or dots to separate
words in variable names, not spaces. Begin names with a letter, not a number.

e R will ignore any information on a line following a #. I usually use this
comment character to include general metadata at the beginning of my data
file, such as the data source, units, and so forth—anything that can’t eas-
ily be encoded in the variable names. I also use comments before, or at the
ends of, particular lines in the data set that might need annotation, such as
the circumstances surrounding questionable data points. You can’t use # to
make a comment in the middle of a line: use a comment like # pH calibra-
tion failed at the end of the line to indicate that a particular field in that
line is suspect.

* Unless your data are truly voluminous, you should also save a hard-copy, archival version of your
data (Gotelli and Ellison, 2004).

“Bolker” — 1/9/2008 — 15:39 — page 31

32 ¢« CHAPTER 2

e If you have other metadata that can’t easily be represented in plaintext format
(such as a map), you’ll have to keep it separately. You can reference the file in
your comments, keep a separate file that lists the location of data and metadata,
or use a system like Morpho (from ecoinformatics.org) to organize it.

Whatever you do, make sure that you have some workable system for maintaining
your metadata. Eventually, your R scripts—which document how you read in your
data, transformed it, and drew conclusions from it—will also become a part of your
metadata. As mentioned in Chapter 1, this is one of the advantages of R over (say)
Excel: after you’ve done your analysis, if you were careful to document your work
sufficiently as you went along, you will be left with a set of scripts that will allow
you to verify what you did; make minor modifications and rerun the analysis; and
apply the same or similar analyses to future data sets.

SHAPE

Just as important as electronic or paper format is the organization or shape of your
data. Most of the time, R prefers that your data have a single record (typically a line
of data values) for each individual observation. This basically means that your data
should usually be in “long” (or “indexed”) format. For example, the first few lines
of the seed removal data set look like this, with a line giving the number of seeds
present for each station/date combination:

station date dist species seeds
1 1 1999-03-23 25 psd 5
2 1 1999-03-27 25 psd 5
3 1 1999-04-03 25 psd 5
4 2 1999-03-23 25 uva 5
5 2 1999-03-27 25 uva 5
6 2 1999-04-03 25 uva 5

Because each station has seeds of only one species and can be at only a single distance
from the forest, these values are repeated for every date. During the first two weeks
of the experiment no seeds of psd or uva were taken by predators, so the number of
seeds remained at the initial value of 3.

Alternatively, you will often come across data sets in “wide” format, like this:

station species dist seeds.1999-03-23 seeds.1999-03-27

1 1 psd 25 5 5
2 2 uva 25 5 5
3 3 pol 25 5 4
4 4 dio 25 5 5
5 5 cor 25 5 4
6 6 abz 25 5 5

(I kept only the first two date columns in order to make this example narrow enough
to fit on the page.)

Long format takes up more room, especially if you have data (such as dist
above, the distance of the station from the edge of the forest) that apply to each

“Bolker” — 1/9/2008 — 15:39 — page 32

EXPLORATORY DATA ANALYSIS o 3

station independent of sample date or species (which therefore have to be repeated
many times in the data set). However, you’ll find that this format is typically what
statistical packages request for analysis.

You can read data into R in wide format and then convert it to long format. R has
several different functions—reshape and stack/unstack in the base package, and
melt/cast/recast in the reshape package*—that will let you switch data back and
forth between wide and long formats. Because there are so many different ways to
structure data, and so many different ways you might want to aggregate or rearrange
them, software tools designed to reshape arbitrary data are necessarily complicated
(Excel’s pivot tables, which are also designed to restructure data, are as complicated
as reshape).

e stack and unstack are simple but basic functions—stack converts from wide
to long format and unstack from long to wide; they aren’t very flexible.

e reshape is very flexible and preserves more information than stack/unstack,
but its syntax is tricky: if long and wide are variables holding the data in the
examples above, then

> reshape (wide, direction = "long", timevar = "date",
+ varying = 4:5)

> reshape(long, direction = "wide", timevar = "date",
+ idvar = c("station", "dist", "species"))

convert back and forth between them. In the first case (wide to long) we specify
that the time variable in the new long-format data set should be date and that
columns 4-5 are the variables to collapse. In the second case (long to wide)
we specify that date is the variable to expand and that station, dist, and
species should be kept fixed as the identifiers for an observation.

e The reshape package contains the melt, cast, and recast functions, which
are similar to reshape but sometimes easier to use, e.g.,

> library (reshape)

> recast (wide, formula = ... ~ ., id.var = c("station",
+ "dist", "species"))

> recast (long, formula = station + dist + species

+ ..., ld.var = c("station", "dist", "species",

+ "date"))

in the formulas above, . .. denotes “all other variables” and . denotes “noth-
ing,” so the formula . . .~ . means “separate out by all variables” (long format)
and station+dist+species™... means “separate out by station, distance,
and species, put the values for each date on one line.”

In general you will have to look carefully at the examples in the documentation and
play around with subsets of your data until you get it reshaped exactly the way you
want. Alternatively, you can manipulate your data in Excel, either with pivot tables
or by brute force (cutting and pasting). In the long run, learning to reshape data will
pay off, but for a single project it may be quicker to use brute force.

*If you don’t know what a package is, go back and read about them in the R supplement for
Chapter 1.

“Bolker” — 1/9/2008 — 15:39 — page 33

34 e CHAPTER 2

2.2.2 Reading in Data
BASIC R COMMANDS

The basic R commands for reading in a data set, once you have it in a long-format text
file, are read.table for space-separated data and read.csv for comma-separated
data. If there are no complications in your data, you should be simply be able to
say (e.g.)

> data = read.table("mydata.dat", header = TRUE)

(if your file is actually called mydata.dat and includes a first row with the column
names) to read your data in (as a data frame; see p. 35) and assign it to the variable
data.

Reading in files presents several potential complications, which are more fully
covered in the R supplement: (1) telling R where to look for data files on your
computer system; (2) checking that every line in the file has the same number of
variables, or fields—R won’t read it otherwise; and (3) making sure that R reads all
your variables as the right data types (discussed in the next section).

2.3 Data Types

When you read data into a computer, the computer stores those data as some par-
ticular data zype. This is partly for efficiency—it’s more efficient to store numbers as
strings of bits rather than as human-readable character strings—Dbut its main purpose
is to maintain a sort of metadata about variables, so the computer knows what to
do with them. Some operations make sense only with particular types—what should
you get when you try to compute 2+"A"? "2A"? If you try to do something like this in
Excel, you get an error code—#VALUE!; if you do it in R, you get the message Error
non-numeric argument to binary operator.*

Computer packages vary in how they deal with data. Some lower-level lan-
guages like C are strongly typed; they insist that you specify exactly what type
every variable should be and require you to convert variables between types (say
integer and real, or floating-point) explicitly. Languages or packages like R or
Excel are looser; they try to guess what you have in mind and convert variables
between types (coerce) automatically as appropriate. For example, if you enter 3/25
into Excel, it automatically converts the value to a date—March 25 of the current
year.

R makes similar guesses as it reads in your data. By default, if every entry in
a column is a valid number (e.g., 234, -127.45, 1.238e3 [computerese for 1.238
x103]), then R guesses the variable is numeric. Otherwise, it makes it a factor—an
indexed list of values used to represent categorical variables, which I will describe
in more detail shortly. Thus, any error in a numeric variable (extra decimal point,
included letter, etc.) will lead R to classify that variable as a factor rather than a
number. R also has a detailed set of rules for dealing with missing values (internally

*The + symbol is called a “binary operator” because it is used to combine two values.

“Bolker” — 1/9/2008 — 15:39 — page 34

EXPLORATORY DATA ANALYSIS e 35

represented as NA, for Not Available). If you use missing-value codes (such as * or
-9999) in your data set, you have to tell R about it or it will read them naively as
strings or numbers.

While R’s standard rules for guessing about input data are pretty simple and
allow you only two options (numeric or factor), there are a variety of ways for
specifying more detail either as R reads in your data or after it has read them in;
these are covered in more detail in the accompanying material.

2.3.1 Basic Data Types

R’s basic (or atomic) data types are integer, numeric (real numbers), logical (TRUE
or FALSE), and character (alphanumeric strings). (There are a few more, such as
complex numbers, that you probably won’t need.) At the most basic level, R organizes
data into vectors of one of these types, which are just ordered sets of data. Here are
a couple of simple (numeric and character) vectors:

> 1:5

[11 1 2345

> c("yes", "no", "maybe")
[1] "yes" "no" "maybe"

More complicated data types include dates (Date) and factors (factor). Factors are
R’s way of dealing with categorical variables. A factor’s underlying structure is a set
of (integer) levels along with a set of the labels associated with each level.

One advantage of using these more complex types, rather than converting your
categorical variables to numeric codes, is that it’s much easier to remember the mean-
ing of the levels as you analyze your data, for example, north and south rather than
0 and 1. Also, R can often do the right things with your data automatically if it
knows what types they are (this is an example of crude-versus-sophisticated where
a little more sophistication may be useful). Much of R’s built-in statistical modeling
software depends on these types to do the right analyses. For example, the command
1m(y~x) (meaning “fit a linear model of y as a function of x,” analogous to SAS’s
PROC GLM) will do an ANOVA if x is categorical (i.e., stored as a factor) or a linear
regression if x is numeric. If you want to analyze variation in population density
among sites designated with integer codes (e.g., 101, 227, 359) and haven’t specified
that R should interpret the codes as categorical rather than numeric values, R will
try to fit a linear regression rather than doing an ANOVA. Many of R’s plotting
functions will also do different things depending on what type of data you give them.
For example, R can automatically plot date axes with appropriate labels. To repeat,
data types are a form of metadata; the more information about the meaning of your
data that you can retain in your analysis, the better.

2.3.2 Data Frames and Matrices

R can organize data at a higher level than simple vectors. A data frame is a table of
data that combines vectors (columns) of different types (e.g., character, factor, and

“Bolker” — 1/9/2008 — 15:39 — page 35

3% ¢ CHAPTER 2

numeric data). Data frames are a hybrid of two simpler data structures: lists, which
can mix arbitrary types of data but have no other structure, and matrices, which are
structured by rows and columns but usually contain only one data type (typically
numeric). When treating the data frame as a list, you can extract columns of data
from the data frame in a variety of different ways:

> SeedPred[[2]]
> SeedPred[["species"]]
> SeedPred{S}species

all extract the second column (a factor containing species abbreviations) from the
data frame SeedPred. You can also treat the data frame as a matrix and use square
brackets [1 to extract the second column:

> SeedPred[, 2]
> SeedPred[, "species"]

or rows 1 through 10
> SeedPred[1:10,]

(SeedPred[i, j] extracts the matrix element in row(s) i and column(s) j; leaving the
columns or rows specification blank, as in SeedPred[i,] or SeedPred[, j], takes
row i (all columns) or column j (all rows) respectively.) A few operations, such as
transposing or calculating a variance-covariance matrix, work only with matrices
(not with data frames); R will usually convert (coerce) data frames to matrices auto-
matically when it makes sense to, but you may sometimes have to use as.matrix to
manually convert a data frame to a matrix.*

2.3.3 Checking Data

Now suppose you’ve decided on appropriate types for all your data and told R about
it. Are the data you’ve read in actually correct, or are there still typographical or other
errors?

SUMMARY

First check the results of summary. For a numeric variable summary will list the min-
imum, first quartile, median, mean, third quartile, and maximum. For a factor it
will list the numbers of observations with each of the first six factor levels, then the
number of remaining observations. (Use table on a factor to see the numbers of
observations at all levels.) It will list the number of NAs for all types.

* Matrices and data frames can appear identical but behave differently. If x is a data frame, either
colnames(x) or names(x) will tell you the column names. If x has a column called a, either x$a or
x[["a"1] or x[,"a"] will retrieve it. If x is a matrix, you must use colnames (x) to get the column names
and x[,"a"] to retrieve a column (the other commands will give errors). Use is.data.frame or class
to tell matrices and data frames apart.

“Bolker” — 1/9/2008 — 15:39 — page 36

EXPLORATORY DATA ANALYSIS o 3

For example:

> summary (SeedPred|[, 1:4])

station dist species date

1 74 10:5883 abz 11480 Min. :1999-03-23
2 74 25:5920 cd 11480 1st Qu. :1999-05-23
3 74 cor 11480 Median :1999-07-24
4 74 dio 11480 Mean :1999-07-25
5 74 pol 11480 3rd Qu. :1999-09-28
6 : 74 psd 11480 Max. :1999-11-28
(Other) :11359 (Other) 12923

(To keep the output short, I’'m looking at the first four columns of the data frame
only: summary (SeedPred) would summarize the whole thing.)
Check the following points:

e Is the total number of observations right? For factors, is the right number of
observations in each level?

e Do the summaries of the numeric variables—mean, median, etc.—look
reasonable? Are the minimum and maximum values about what you
expected?

e Are the numbers of NAs in each column reasonable? If not (especially if you
have extra mostly NA columns), you may want to go back a few steps and use
count.fields to identify rows with extra fields.

STR

The str command tells you about the structure of an R variable: it is slightly less
useful than summary for dealing with data, but it may come in handy later for figuring
out more complicated R variables. Applied to a data frame, it tells you the total
number of observations (rows) and variables (columns) and prints out the names
and classes of each variable along with the first few observations in each variable.

> str (SeedPred)

‘data.frame’: 11803 obs. of 9 variables:
$ station : Factor w/ 160 levels "1","2","3","4" . .: 1111111

111

$ dist : Factor w/ 2 levels "10","25": 1111111111 ...

$ species : Factor w/ 8 levels "abz","cd","cor",..: 7777777
TTT ...

$ date : Class ‘Date’ num [1:11803] 10675 10678 10685 10692
10699 ...

$ seeds :int 5555000000 ...

$ tcum :num O 3 10 17 24 31 39 46 53 60 ...

$ tint :num NA 377778777 ...

$ taken :int NAOOO5B500000

$ available: int NA 555500000

“Bolker” — 1/9/2008 — 15:39 — page 37

38 ¢ CHAPTER 2

CLASS

The class command prints out the class (numeric, factor, Date, logical, etc.) of a
variable. class(SeedPred) gives "data.frame"; sapply (SeedPred, class) applies
class to each column of the data individually.

> class (SeedPred)
[1] "data.frame"

> sapply (SeedPred, class)

station dist species date seeds tcum
"factor" "factor" "factor" "Date" "integer" "numeric"
tint taken available
"numeric" "integer" "integer"

HEAD

The head command just prints out the beginning of a data frame; by default it prints
the first six rows, but head(data, 10) (e.g.) will print out the first 10 rows.

> head(SeedPred)

station dist species date seeds tcum tint taken available
1 1 10 psd 1999-03-25 5 0 NA NA NA
2 1 10 psd 1999-03-28 5 3 3 0 5
3 1 10 psd 1999-04-04 5 10 7 0 5
4 1 10 psd 1999-04-11 5 17 7 0 5
5 1 10 psd 1999-04-18 0 24 7 5 5
6 1 10 psd 1999-04-25 0 31 7 0 0

The tail command prints out the end of a data frame.

TABLE

table is R’s command for cross-tabulation; you can use it to check that you have
appropriate numbers of observations in different factor combinations.

> table(SeedPredSstation, SeedPredSspecies)

abz cd cor dio mmu pol psd uva
1 0 0 0 0 0 0 74 0
2 0 0 0 0 0 0 0 74
3 0 0 0 0 0 74 0 0
4 0 0 0 74 0 0 0 0
5 0 0 74 0 0 0 0 0
6 74 0 0 0 0 0 0 0

(just the first six lines are shown): apparently, each station has seeds of only a single
species. The $ extracts variables from the data frame SeedPred, and table says we

“Bolker” — 1/9/2008 — 15:39 — page 38

EXPLORATORY DATA ANALYSIS o 39

want to count the number of instances of each combination of station and species;
we could also do this with a single factor or with more than two.

DEALING WITH NAs

Missing values are a nuisance, but a fact of life. Throwing out or ignoring missing
values is tempting, but it can be dangerous. Ignoring missing values can bias your
analyses, especially if the pattern of missing values is not completely random. R
is conservative by default and assumes that, for example, 2+NA equals NA—if you
don’t know what the missing value is, then the sum of it and any other number
is also unknown. Almost any calculation you make in R will be contaminated by
NAs, which is logical but annoying. Perhaps most difficult is that you can’t just do
what comes naturally and say (e.g.) x=x[x!=NA] to remove values that are NA from
a variable, because even comparisons to NA result in NA!

You can use the special function is.na to count the number of NA values
(sum(is.na(x))) or to throw out the NA values in a vector (x=x[!is.na(x)]).
Functions such as mean, var, sd, sum (and some others) have an optional
na.rm argument: na.rm=TRUE drops NA values before doing the calculation.
Otherwise if x contains any NAs, mean (x) will result in NA and sd (x) will give
an error about missing observations.

To convert NA values to a particular value, use x[is.na(x)]=value; e.g.,
to set NAs to zero x[is.na(x)]=0, or to set NAs to the mean value
x[is.na(x)]=mean(x,na.rm=TRUE). Don’t do this unless you have a very
good, and defensible, reason.

na.omit will drop NAs from a vector (na.omit (x)), but it is also smart enough
to do the right thing if x is a data frame instead, and throw out all the cases
(rows) where any variable is NA; however, this may be too stringent if you
are analyzing a subset of the variables. For example, you might have a really
unreliable soil moisture meter that produces lots of NAs, but you don’t need
to throw away all of these data points while you’re analyzing the relationship
between light and growth. (complete. cases returns a logical vector that says
which rows have no NAs; if x is a data frame, na.omit(x) is equivalent to
x[complete.cases(x),].)

Calculations of covariance and correlation (cov and cor) have more compli-
cated options: use="all.obs", use="complete.obs", or use="pairwise.
complete.obs". all.obs uses all of the data (but the answer will contain
NAs every time either variable contains one); complete.obs uses only the
observations for which none of the variables are NA (but may thus leave out
a lot of data); and pairwise.complete.obs computes the pairwise covari-
ance/correlations using the observations where both of each particular pair of
variables are non-NA (but may lead in some cases to incorrect estimates).

As you discover errors in your data, you may have to go back to your original

data set to correct errors and then reenter them into R (using the commands you
have saved, of course). Or you can change a few values in R, e.g.,

> SeedPred([24, "species"] = "mmu"

“Bolker” — 1/9/2008 — 15:39 — page 39

40 ¢« CHAPTER 2

to change the species in the 24th observation from psd to mmu. Whatever you do,
document this process as you go along, and always maintain your original data set
in its original, archival, form, even including data you think are errors (this is easier
to remember if your original data set is in the form of field notebooks). Keep a log
of what you modify so conflicting versions of your data don’t confuse you.

2.4 Exploratory Data Analysis and Graphics

The next step in checking your data is to graph them, which leads on naturally to
exploring patterns. Graphing is the best way to understand not only data, but also
the models that you fit to data; as you develop models you should graph the results
frequently to make sure you understand how the model is working.

R gives you complete control of all aspects of graphics (Figure 1.7) and lets you
save graphics in a wide range of formats. The only major nuisance of doing graphics
in R is that R constructs graphics as though it were drawing on a static page, not by
adding objects to a dynamic scene. You generally specify the positions of all graphics
on the command line, not with the mouse (although the locator and identify
functions can be useful). Once you tell R to draw a point, line, or piece of text there
is no way to erase or move it. The advantage of this procedure, like logging your data
manipulations, is that you have a complete record of what you did and can easily
recreate the picture with new data.

R actually has two different coexisting graphics systems. The base graphics sys-
tem is cruder and simpler, while the lattice graphics system (in the lattice package)
is more sophisticated and complex. Both can create scatterplots, box-and-whisker
plots, histograms, and other standard graphical displays. Lattice graphics do more
automatic processing of your data and produce prettier graphs, but the commands
are harder to understand and customize. In the realm of 3D graphics, there are several
more options, at different stages of development. Base graphics and lattice graphics
both have some 3D capabilities (persp in base, wireframe and cloud in lattice); the
scatterplot3d package builds on base to draw 3D point clouds; the rgl package
(still under development) allows you to rotate and zoom the 3D coordinate system
with the mouse; and the ggobi package is an interface to a system for visualizing
multidimensional point data.

2.4.1 Seed Removal Data: Discrete Numeric Predictors,
Discrete Numeric Responses

As described in Chapter 1, the seed removal data set from Duncan and Duncan
(2000) gives information on the rate at which seeds were removed from experi-
mental stations set up in a Ugandan grassland. Seeds of eight species were set out
at stations along two transects different distances from the forest and monitored
every few days for more than eight months. We have already seen a subset of these
data in a brief example, but we haven’t really examined the details of the data set.
There are a total of 11,803 observations, each containing information on the sta-
tion number (station), distance in meters from the forest edge (dist), the species

“Bolker” — 1/9/2008 — 15:39 — page 40

