Quantitative Genetics Approaches to Modeling Adaptive Evolution

Colleen T. Webb Department of Biology Colorado State University

Game Plan

- Quantitative genetics background
- Two approaches
 - Deterministic Gradient Equations (sensu Lande)
 - Stochastic Adaptive Dynamics (sensu Dieckmann)
- Pros and cons of these approaches
- Examples of theory applications
- Example of a real world system

Modeling Goals

- Explore adaptive evolutionary processes underlying evolutionary patterns
- Explicitly link evolutionary consequences of ecological interactions
- Usually applied to theory problems (but not always)

Defining Quantitative Traits

- Continuous, measurable, non-categorizable
- Genotypic and environmental effects determine trait value
- Usually follow phenotype
- Modeling at phenotypic level

Lande's Equation Combines These... $\frac{d\overline{z}}{dt} = \sigma_a^{\ 2} \frac{d\overline{M}(z)}{d\overline{z}}$ = Lots of assumptions = User beware = Assumptions mostly reasonable = Most accurate under weak selection

Stochastic Simulation Approaches

- Adaptive Dynamics
- Dieckmann, Geritz, others
- Simulates "mutational stochasticity"
- Based on ESS theory
- Underlying fitness function

ESS Theory in One Slide!

- Compare the fitness of a rare mutant to a resident type to see if the mutant can invade
- We compare fitness(mutant|resident) to fitness(resident|resident)
- If fitness(mutant|resident) is greater than fitness(resident|resident) then, mutant invades
- Somewhat simplified!

Adaptive Dynamics Simulation

- Mutants appear in the population stochastically
- Fitnesses compared
- Type in population is updated

 These approaches have different assumptions and the potential to give quite different results, but in practice they frequently give similar results

Deterministic Approaches

Pros

- Analytical approach makes it easy to understand dynamics
 Tries to realistically
- mimic mutation and selection processes
- Cons
 Constant variance assumption and
 - disruptive selectionApplicability to frequency dependent selection?
 - Standing variance vs. mutation-selection balance

Stochastic Approaches

- Pros
 - Can use any type of fitness function
 - Relatively easy to analyze
 - Models of speciation
- Cons
- Potentially computationally intensive
- Mutation-selection process unnatural

Fitness Functions Are Everything

- Measure fitness function experimentally
- Pull fitness function from underlying ecological model (most common)

$$\frac{dx}{dt} = f(x, z)x$$

 f describes per capita growth rate, which is a measure of fitness

Making Ecology Explicit

- Usual assumption is that underlying ecological model is at equilibrium
- Ecology can be made explicit
 - Deterministic model with interaction between ecological and evolutionary timescales
 - Stochastic model with both mutational and demographic stochasticity

Applications

- Most often used in theoretical systems, but can be applied to real systems
- Two theory examples
 - Darwinian Extinction/Evolutionary Suicide
 - Evolutionary Branching (underlying phylogenetic patterns)
- Real system example
 - Plague in prairie dogs

Motivation

- Variation in levels of resistance among hosts
- In prairie dogs: Strong selection pressure, weak response – What's up?

Quantitative Validation		
	Model	Field Data
Probability of Extinction	98%	12 of 12 epizootics
Time to Extinction	~ 14 weeks	~ 6-8 weeks

Adding Genetic Variation

- Simulation model
- Stochastic births and deaths (demographic stochasticity)
- When birth occurs, offspring has probability of slightly different resistance (mutational stochasticity)

Adding Selection

- Plague returns to a town approximately every 7 years
- Pulsed plague from the distribution of plague return times

When is demographic stochasticity important?

- Race between evolutionary and demographic stochasticity processes
- Theory suggests critical population size is 10-100 individuals
- Prairie dog models about 6 resistant individuals usually survive
- Great gerbil models many individuals survive

Gomulkiewicz and Holt 1995 Lande 1993

Initial conditions matter

- Different initial conditions (i.e., levels of resistance) is what drives differences in population persistence
- Threshold exists such that some populations/species are unable to maintain evolutionary response despite strong selection pressure

Acknowledgements

Funding

- NSF Ecology of Infectious Diseases
- Shortgrass Steppe LTER
- RAPIDD program
- People
 - Mike Antolin and Lab
 - Webb lab: Christopher Brooks, Dylan George, Brandon Goodell