
The ape Package
May 8, 2008

Version 2.2

Date 2008-05-07

Title Analyses of Phylogenetics and Evolution

Author Emmanuel Paradis, Ben Bolker, Julien Claude, Hoa Sien Cuong, Richard Desper, Benoit
Durand, Julien Dutheil, Olivier Gascuel, Gangolf Jobb, Christoph Heibl, Vincent Lefort, Jim
Lemon, Yvonnick Noel, Johan Nylander, Rainer Opgen-Rhein, Korbinian Strimmer, Damien de
Vienne

Maintainer Emmanuel Paradis <Emmanuel.Paradis@mpl.ird.fr>

Depends R (>= 2.6.0)

Suggests gee, nlme, lattice

ZipData no

Description ape provides functions for reading, writing, plotting, and manipulating phylogenetic trees,
analyses of comparative data in a phylogenetic framework, analyses of diversification and
macroevolution, computing distances from allelic and nucleotide data, reading nucleotide
sequences, and several tools such as Mantel’s test, computation of minimum spanning tree, the
population parameter theta based on various approaches, nucleotide diversity, generalized
skyline plots, estimation of absolute evolutionary rates and clock-like trees using mean path
lengths, non-parametric rate smoothing and penalized likelihood, classifying genes in trees using
the Klastorin-Misawa-Tajima approach. Phylogeny estimation can be done with the NJ, BIONJ,
ME, and ML methods.

License GPL (>= 2)

URL http://ape.mpl.ird.fr/

R topics documented:
DNAbin . 4
DNAmodel . 6
GC.content . 7
Initialize.corPhyl . 8

1

2 R topics documented:

Moran.I . 9
NPRS.criterion . 10
ace . 12
add.scale.bar . 15
all.equal.phylo . 16
ape-internal . 17
as.alignment . 18
as.matching . 19
as.phylo . 21
as.phylo.formula . 22
axisPhylo . 23
balance . 24
base.freq . 25
bd.ext . 25
bind.tree . 27
BIONJ . 28
bird.families . 29
bird.orders . 30
birthdeath . 31
boot.phylo . 32
branching.times . 35
carnivora . 35
cherry . 36
chiroptera . 37
chronoMPL . 38
chronogram . 40
chronopl . 41
coalescent.intervals . 43
collapse.singles . 44
collapsed.intervals . 45
compar.cheverud . 46
compar.gee . 48
compar.lynch . 50
compar.ou . 52
compute.brlen . 54
consensus . 55
cophenetic.phylo . 56
cophyloplot . 57
corBlomberg . 59
corBrownian . 60
corClasses . 61
corGrafen . 62
corMartins . 63
corPagel . 65
correlogram.formula . 66
data.nex . 67
dist.dna . 68
dist.gene . 71

R topics documented: 3

dist.topo . 72
diversi.gof . 73
diversi.time . 74
drop.tip . 76
evolve.phylo . 77
FastME . 78
gammaStat . 79
heterozygosity . 80
hivtree . 81
howmanytrees . 82
identify.phylo . 84
is.binary.tree . 85
is.ultrametric . 86
klastorin . 87
ladderize . 88
landplants . 89
ltt.plot . 90
mantel.test . 92
matexpo . 93
mcmc.popsize . 94
mlphylo . 96
mrca . 98
mst . 99
multi2di . 100
nj . 101
node.depth . 102
nodelabels . 103
nuc.div . 106
opsin . 107
phymltest . 108
pic . 110
plot.ancestral . 112
plot.correlogram . 113
plot.phylo . 114
plot.varcomp . 119
print.phylo . 120
ratogram . 121
read.GenBank . 122
read.caic . 123
read.dna . 125
read.nexus . 127
read.nexus.data . 129
read.tree . 131
reorder.phylo . 133
root . 134
rotate . 135
rtree . 137
seg.sites . 138

4 DNAbin

sh.test . 139
skyline . 140
skylineplot . 142
subtreeplot . 144
subtrees . 145
summary.phylo . 146
theta.h . 147
theta.k . 148
theta.s . 149
unique.multiPhylo . 151
varcomp . 152
vcv.phylo . 153
weight.taxo . 154
which.edge . 154
woodmouse . 155
write.dna . 156
write.nexus . 158
write.nexus.data . 159
write.tree . 160
xenarthra . 161
yule . 162
yule.cov . 163
zoom . 165

Index 167

DNAbin Manipulate DNA Sequences in Bit-Level Format

Description

These functions help to manipulate DNA sequences coded in the bit-level coding scheme.

Usage

S3 method for class 'DNAbin':
print(x, ...)
S3 method for class 'DNAbin':
summary(object, printlen = 6, digits = 3, ...)
S3 method for class 'DNAbin':
rbind(...)
S3 method for class 'DNAbin':
cbind(..., check.names = TRUE)
S3 method for class 'DNAbin':
x[i, j, drop = TRUE]
S3 method for class 'DNAbin':
as.matrix(x, ...)

DNAbin 5

Arguments

x, object an object of class "DNAbin".
... either further arguments to be passed to or from other methods in the case of

print, summary, and as.matrix, or a series of objects of class "DNAbin"
in the case of rbind and cbind.

printlen the number of labels to print (6 by default).
digits the number of digits to print (3 by default).
check.names a logical specifying whether to check the rownames before binding the columns

(see details).
i, j indices of the rows and/or columns to select or to drop. They may be numeric,

logical, or character (in the same way than for standard R objects).
drop logical; if TRUE (the default), the returned object is of the lowest possible di-

mension.

Details

These are all ‘methods’ of generic functions which are here applied to DNA sequences stored as
objects of class "DNAbin". They are used in the same way than the standard R functions to
manipulate vectors, matrices, and lists. Additionally, the operators [[and $ may be used to extract
a vector from a list.

These functions are provided to manipulate easily DNA sequences coded with the bit-level coding
scheme. The latter allows much faster comparisons of sequences, as well as storing them in less
memory compared to the format used before ape 1.10.

For cbind, if "check.names = TRUE", the rownames of each matrix are checked, and the
rows are reordered if necessary. If the rownames differ among matrices, an error occurs. If
"check.names = FALSE", the matrices are simply binded and the rownames of the first matrix
are used.

as.matrix may be used to convert DNA sequences (of the same length) stored in a list into a
matrix while keeping the names and the class.

Value

an object of class "DNAbin" in the case of rbind, cbind, and [.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. (2007) A Bit-Level Coding Scheme for Nucleotides. http://ape.mpl.ird.fr/
misc/BitLevelCodingScheme_20April2007.pdf

See Also

as.DNAbin, read.dna, read.GenBank, write.dna

The corresponding generic functions are documented in the package base.

http://ape.mpl.ird.fr/misc/BitLevelCodingScheme_20April2007.pdf
http://ape.mpl.ird.fr/misc/BitLevelCodingScheme_20April2007.pdf

6 DNAmodel

Examples

data(woodmouse)
woodmouse
summary(woodmouse)
summary(woodmouse, 15, 6)
summary(woodmouse[1:5, 1:300], 15, 6)
Just to show how distances could be influenced by sampling:
dist.dna(woodmouse[1:2,])
dist.dna(woodmouse[1:3,])

DNAmodel Defines Models of DNA Evolution

Description

This function defines a model of evolution for a set of DNA sequences with possible partitions.

Usage

DNAmodel(model = "K80", partition = 1,
ncat.isv = 1, invar = FALSE,
equal.isv = TRUE, equal.invar = 1)

Arguments

model a vector of mode character giving the substition model.
partition a vector of integers defining the partitions for the substition models (eventually

recycled).
ncat.isv the number of categories in each partition.
invar a logical value specifying whether there are invariants.
equal.isv a logical value specifying whether the ‘alpha’ parameter is the same in all parti-

tions; has no effet if ncat = 1 or if partition = 1.
equal.invar similar to the argument above but for the proportion of invariants.

Details

partition is recycled along the sequence: thus by default there is a single partition. For instance,
to partition a sequence of 1000 sites into two partitions of equal length, one will use partition =
c(rep(1, 500), rep(2, 500)). The partitions must be numbered with a series of integers
(1, 2, 3, ...). To partition the codon positions, one could do partition = c(1, 1, 2).

The substition models are the same in all partitions. Branch lengths are the same in all partitions up
to a multiplying coefficient (the contrast parameter, denoted ’xi’).

The substitution models must be among the followings: "JC69" "K80", "F81", "F84", "HKY85",
"T92", "TN93", and "GTR". These models (except HKY85 and GTR) are described in the help
page of dist.dna.

Inter-sites variation in substitution rates (ISV) is allowed by specifying ncat.isv greater than
one.

GC.content 7

Value

an object of class "DNAmodel" with components defined by the arguments of the function call.

Note

The result of this function is not intended to be used by the user, but rather to be passed to mlphylo.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

mlphylo, dist.dna

Examples

the K80 model:
mod <- DNAmodel()
the simplest substitution model:
mod <- DNAmodel("JC69")
the classical GTR + G4 + I:
mod <- DNAmodel("GTR", ncat.isv = 4, invar = TRUE)
codon-partitioning (with K80):
mod <- DNAmodel(partition = c(1, 1, 2))
the same but adding inter-sites variation (the alpha parameter
is the same for both partitions):
mod <- DNAmodel(partition = c(1, 1, 2), ncat.isv = 4)
... and with different `alpha' for each partition:
mod <- DNAmodel(partition = c(1, 1, 2), ncat.isv = 4, equal.isv = FALSE)

GC.content Content in GC from DNA Sequences

Description

This function computes the percentage of G+C in a sample of DNA sequences.

Usage

GC.content(x)

Arguments

x a vector, a matrix, a data frame, or a list which contains the DNA sequences.

8 Initialize.corPhyl

Details

The percentage of G+C is computed over all sequences in the sample. All missing or unknown sites
are discarded from the computations. The present function actually uses the function base.freq.

Value

A single numeric value is returned.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

base.freq, seg.sites, nuc.div

Initialize.corPhyl Initialize a ’corPhyl’ Structure Object

Description

Initialize a corPhyl correlation structure object. Does the same as Initialize.corStruct,
but also checks the row names of data and builds an index.

Usage

S3 method for class 'corPhyl':
Initialize(object, data, ...)

Arguments

object An object inheriting from class corPhyl.
data The data to use. If it contains rownames, they are matched with the tree tip

labels, otherwise data are supposed to be in the same order than tip labels and a
warning is sent.

... some methods for this generic require additional arguments. None are used in
this method.

Value

An initialized object of same class as object.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

See Also

corClasses, Initialize.corStruct.

Moran.I 9

Moran.I Moran’s I Autocorrelation Index

Description

This function computes Moran’s I autocorrelation coefficient of x giving a matrix of weights using
the method described by Gittleman and Kot (1990).

Usage

Moran.I(x, weight, scaled = FALSE, na.rm = FALSE,
alternative = "two.sided")

Arguments

x a numeric vector.

weight a matrix of weights.

scaled a logical indicating whether the coefficient should be scaled so that it varies
between -1 and +1 (default to FALSE).

na.rm a logical indicating whether missing values should be removed.

alternative a character string specifying the alternative hypothesis that is tested against the
null hypothesis of no phylogenetic correlation; must be of one "two.sided",
"less", or "greater", or any unambiguous abbrevation of these.

Details

The matrix weight is used as “neighbourhood” weights, and Moran’s I coefficient is computed
using the formula:

I =
n

S0

∑n
i=1

∑n
j=1 wi,j(yi − y)(yj − y)∑n

i=1 (yi − y)2

with

• yi = observations

• wi,j = distance weight

• n = number of observations

• S0 =
∑n

i=1

∑n
j=1 wij

The null hypothesis of no phylogenetic correlation is tested assuming normality of I under this
null hypothesis. If the observed value of I is significantly greater than the expected value, then
the values of x are positively autocorrelated, whereas if Iobserved < Iexpected, this will indicate
negative autocorrelation.

10 NPRS.criterion

Value

A list containing the elements:

observed the computed Moran’s I.

expected the expected value of I under the null hypothesis.

sd the standard deviation of I under the null hypothesis.

p.value the P-value of the test of the null hypothesis against the alternative hypothesis
specified in alternative.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉 and Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Gittleman, J. L. and Kot, M. (1990) Adaptation: statistics and a null model for estimating phyloge-
netic effects. Systematic Zoology, 39, 227–241.

See Also

weight.taxo

Examples

tr <- rtree(30)
x <- rnorm(30)
weights w[i,j] = 1/d[i,j]:
w <- 1/cophenetic(tr)
set the diagonal w[i,i] = 0 (instead of Inf...):
diag(w) <- 0
Moran.I(x, w)
Moran.I(x, w, alt = "l")
Moran.I(x, w, alt = "g")
Moran.I(x, w, scaled = TRUE) # usualy the same

NPRS.criterion Objective Function Employed in Nonparametric Rate Smoothing

Description

NPRS.criterion computes the objective function to be minimized in the NPRS (nonparametric
rate smoothing) algorithm described in Sanderson (1997).

Usage

NPRS.criterion(phy, chrono, expo = 2, minEdgeLength = 1e-06)

NPRS.criterion 11

Arguments

phy A non-clock-like phylogenetic tree (i.e. an object of class "phylo"), where
the branch lengths are measured in substitutions.

chrono A chronogram, i.e. a clock-like tree (i.e. an object of class "phylo"), where
the branch lengths are measured in absolute time.

expo Exponent in the objective function (default value: 2)
minEdgeLength

Minimum edge length in the phylogram (default value: 1e-06). If any branch
lengths are smaller then they will be set to this value.

Details

Please refer to Sanderson (1997) for mathematical details. Note that is is not computationally
efficient to optimize the branch lengths in a chronogram by using NPRS.criterion - please use
chronogram instead.

Value

NPRS.criterion returns the value of the objective function given a phylogram and a chrono-
gram.

Author(s)

Gangolf Jobb (http://www.treefinder.de) and Korbinian Strimmer (http://www.stat.
uni-muenchen.de/~strimmer/)

References

Sanderson, M. J. (1997) A nonparametric approach to estimating divergence times in the absence
of rate constancy. Molecular Biology and Evolution, 14, 1218–1231.

See Also

ratogram, chronogram

Examples

get tree
data("landplants.newick") # example tree in NH format
tree.landplants <- read.tree(text = landplants.newick)

plot tree
tree.landplants
plot(tree.landplants, label.offset = 0.001)

estimate chronogram
chrono.plants <- chronogram(tree.landplants)

plot

http://www.treefinder.de
http://www.stat.uni-muenchen.de/~strimmer/
http://www.stat.uni-muenchen.de/~strimmer/

12 ace

plot(chrono.plants, label.offset = 0.001)

value of NPRS function for our estimated chronogram
NPRS.criterion(tree.landplants, chrono.plants)

ace Ancestral Character Estimation

Description

This function estimates ancestral character states, and the associated uncertainty, for continuous and
discrete characters.

logLik, deviance, and AIC are generic functions used to extract the log-likelihood, the de-
viance (-2*logLik), or the Akaike information criterion of a tree. If no such values are available,
NULL is returned.

anova is another generic function that is used to compare nested models: the significance of the
additional parameter(s) is tested with likelihood ratio tests. You must ensure that the models are
effectively nested (if they are not, the results will be meaningless). It is better to list the models
from the smallest to the largest.

Usage

ace(x, phy, type = "continuous", method = "ML", CI = TRUE,
model = if (type == "continuous") "BM" else "ER",
scaled = TRUE, kappa = 1, corStruct = NULL, ip = 0.1)

S3 method for class 'ace':
logLik(object, ...)
S3 method for class 'ace':
deviance(object, ...)
S3 method for class 'ace':
AIC(object, ..., k = 2)
S3 method for class 'ace':
anova(object, ...)

Arguments

x a vector or a factor.

phy an object of class "phylo".

type the variable type; either "continuous" or "discrete" (or an abbreviation
of these).

method a character specifying the method used for estimation. Three choices are possi-
ble: "ML", "pic", or "GLS".

CI a logical specifying whether to return the 95% confidence intervals of the ances-
tral state estimates (for continuous characters) or the likelihood of the different
states (for discrete ones).

ace 13

model a character specifying the model (ignored if method = "GLS"), or a numeric
matrix if type = "discrete" (see details).

scaled a logical specifying whether to scale the contrast estimate (used only if method
= "pic").

kappa a positive value giving the exponent transformation of the branch lengths (see
details).

corStruct if method = "GLS", specifies the correlation structure to be used (this also
gives the assumed model).

ip the initial value(s) used for the ML estimation procedure when type == "discrete"
(possibly recycled).

object an object of class "ace".

k a numeric value giving the penalty per estimated parameter; the default is k =
2 which is the classical Akaike information criterion.

... further arguments passed to or from other methods.

Details

If type = "continuous", the default model is Brownian motion where characters evolve ran-
domly following a random walk. This model can be fitted by maximum likelihood (the default,
Schluter et al. 1997), least squares (method = "pic", Felsenstein 1985), or generalized least
squares (method = "GLS", Martins and Hansen 1997, Cunningham et al. 1998). In the lat-
ter case, the specification of phy and model are actually ignored: it is instead given through a
correlation structure with the option corStruct.

For discrete characters (type = "discrete"), only maximum likelihood estimation is avail-
able (Pagel 1994). The model is specified through a numeric matrix with integer values taken as
indices of the parameters. The numbers of rows and of columns of this matrix must be equal, and
are taken to give the number of states of the character. For instance, matrix(c(0, 1, 1, 0),
2) will represent a model with two character states and equal rates of transition, matrix(c(0,
1, 2, 0), 2) a model with unequal rates, matrix(c(0, 1, 1, 1, 0, 1, 1, 1, 0),
3) a model with three states and equal rates of transition (the diagonal is always ignored). There are
short-cuts to specify these models: "ER" is an equal-rates model (e.g., the first and third examples
above), "ARD" is an all-rates-different model (the second example), and "SYM" is a symmetrical
model (e.g., matrix(c(0, 1, 2, 1, 0, 3, 2, 3, 0), 3)). If a short-cut is used, the
number of states is determined from the data.

Value

a list with the following elements:

ace if type = "continuous", the estimates of the ancestral character values.

CI95 if type = "continuous", the estimated 95% confidence intervals.

sigma2 if type = "continuous", model = "BM", and method = "ML", the
maximum likelihood estimate of the Brownian parameter.

rates if type = "discrete", the maximum likelihood estimates of the transition
rates.

se if type = "discrete", the standard-errors of estimated rates.

14 ace

index.matrix if type = "discrete", gives the indices of the rates in the rate matrix.

loglik if method = "ML", the maximum log-likelihood.

lik.anc if type = "discrete", the scaled likelihoods of each ancestral state.

call the function call.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉, Ben Bolker 〈bolker@zoo.ufl.edu〉

References

Cunningham, C. W., Omland, K. E. and Oakley, T. H. (1998) Reconstructing ancestral character
states: a critical reappraisal. Trends in Ecology & Evolution, 13, 361–366.

Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist, 125, 1–15.

Martins, E. P. and Hansen, T. F. (1997) Phylogenies and the comparative method: a general ap-
proach to incorporating phylogenetic information into the analysis of interspecific data. American
Naturalist, 149, 646–667.

Pagel, M. (1994) Detecting correlated evolution on phylogenies: a general method for the com-
parative analysis of discrete characters. Proceedings of the Royal Society of London. Series B.
Biological Sciences, 255, 37–45.

Schluter, D., Price, T., Mooers, A. O. and Ludwig, D. (1997) Likelihood of ancestor states in
adaptive radiation. Evolution, 51, 1699–1711.

See Also

corBrownian, corGrafen, corMartins, compar.ou, anova

Examples

Just some random data...
data(bird.orders)
x <- rnorm(23)
Compare the three methods for continuous characters:
ace(x, bird.orders)
ace(x, bird.orders, method = "pic")
ace(x, bird.orders, method = "GLS",

corStruct = corBrownian(1, bird.orders))
For discrete characters:
x <- factor(c(rep(0, 5), rep(1, 18)))
ans <- ace(x, bird.orders, type = "d")
Showing the likelihoods on each node:
plot(bird.orders, type = "c", FALSE, label.offset = 1)
co <- c("blue", "yellow")
tiplabels(pch = 22, bg = co[as.numeric(x)], cex = 2, adj = 1)
nodelabels(thermo = ans$lik.anc, piecol = co, cex = 0.75)
An example of the use of the argument `ip':
tr <- character(4)
tr[1] <- "((((t10:5.03,t2:5.03):2.74,(t9:4.17,"
tr[2] <- "t5:4.17):3.60):2.80,(t3:4.05,t7:"

add.scale.bar 15

tr[3] <- "4.05):6.53):2.32,((t6:4.38,t1:4.38):"
tr[4] <- "2.18,(t8:2.17,t4:2.17):4.39):6.33);"
tr <- read.tree(text = paste(tr, collapse = ""))
y <- c(rep(1, 6), rep(2, 4))
The default `ip = 0.1' makes ace fails:
ace(y, tr, type = "d")
ace(y, tr, type = "d", ip = 0.01)
Surprisingly, using an initial value farther to the
MLE than the default one works:
ace(y, tr, type = "d", ip = 0.3)

add.scale.bar Add a Scale Bar to a Phylogeny Plot

Description

This function adds a horizontal bar giving the scale of the branch lengths to a plot of a phylogenetic
tree on the current graphical device.

Usage

add.scale.bar(x = 0, y = 1, length = NULL, ...)

Arguments

x x location of the bar.

y y location of the bar.

length a numeric value giving the length of the scale bar. If none is supplied, a value is
calculated from the data.

... further arguments to be passed to text.

Details

As from version 1.4 of ape, the options of this function have been redefined, and have now default
values. By default, the scale bar is plotted on the left bottom corner of the plot.

The further arguments (...) are used to format the text. They may be font, cex, col, and so on
(see examples below, and the help page on text).

The function locator may be used to determine the x and y arguments.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

plot.phylo, axisPhylo, locator

16 all.equal.phylo

Examples

tr <- rtree(10)
layout(matrix(1:2, 2, 1))
plot(tr)
add.scale.bar()
plot(tr)
add.scale.bar(cex = 0.7, font = 2, col = "red")
layout(matrix(1))

all.equal.phylo Global Comparison of two Phylogenies

Description

This function makes a global comparison of two phylogenetic trees.

Usage

S3 method for class 'phylo':
all.equal(target, current, use.edge.length = TRUE,

use.tip.label = TRUE, index.return = FALSE,
tolerance = .Machine$double.eps ^ 0.5,
scale = NULL, ...)

Arguments

target an object of class "phylo".
current an object of class "phylo".
use.edge.length

if FALSE only the topologies are compared; the default is TRUE.
use.tip.label

if FALSE the unlabelled trees are compared; the default is TRUE.
index.return if TRUE the function returns a two-column matrix giving the correspondence

between the nodes of both trees.
tolerance the numeric tolerance used to compare the branch lengths.
scale a positive number, comparison of branch lengths is made after scaling (i.e., di-

viding) them by this number.
... further arguments passed to or from other methods.

Details

This function is meant to be an adaptation of the generic function all.equal for the comparison
of phylogenetic trees.

A single phylogenetic tree may have several representations in the Newick format and in the
"phylo" class of objects used in ‘ape’. One aim of the present function is to be able to iden-
tify whether two objects of class "phylo" represent the same phylogeny.

Only the labelled topologies are compared (i.e. branch lengths are not considered.

ape-internal 17

Value

A logical value, or a two-column matrix.

Author(s)

Benoît 〈b.durand@alfort.AFSSA.FR〉

See Also

all.equal for the generic R function

Examples

maybe the simplest example of two representations
for the same rooted tree...:
t1 <- read.tree(text = "(a:1,b:1);")
t2 <- read.tree(text = "(b:1,a:1);")
all.equal(t1, t2)
... compare with this:
identical(t1, t2)
one just slightly more complicated...:
t3 <- read.tree(text = "((a:1,b:1):1,c:2);")
t4 <- read.tree(text = "(c:2,(a:1,b:1):1);")
all.equal(t3, t4) # == all.equal.phylo(t3, t4)
... here we force the comparison as lists:
all.equal.list(t3, t4)
t5 <- read.tree(text = "(a:2,(c:1,b:1):1);")
note that this does NOT return FALSE...:
all.equal(t3, t5)
... do this instead:
identical(all.equal(t3, t5), TRUE)

ape-internal Internal Ape Functions

Description

Internal ape functions.

Note

These are not to be called by the user (or in some cases are just waiting for proper documentation
to be written).

18 as.alignment

as.alignment Conversion Among DNA Sequence Internal Formats

Description

These functions transform a set of DNA sequences among various internal formats.

Usage

as.alignment(x)
as.DNAbin(x, ...)

S3 method for class 'character':
as.DNAbin(x, ...)

S3 method for class 'list':
as.DNAbin(x, ...)

S3 method for class 'alignment':
as.DNAbin(x, ...)

S3 method for class 'DNAbin':
as.character(x, ...)

Arguments

x a matrix or a list containing the DNA sequences, or an object of class "alignment".

... further arguments to be passed to or from other methods.

Details

For as.alignment, the sequences given as argument should be stored as matrices or lists of
single-character strings (the format used in ape before version 1.10). The returned object is in the
format used in the package seqinr to store aligned sequences.

as.DNAbin is a generic function with methods so that it works with sequences stored into vectors,
matrices, or lists.

as.character is a generic function: the present method converts objects of class "DNAbin"
into the format used before ape 1.10 (matrix of single characters, or list of vectors of single char-
acters). This function must be used first to convert objects of class "DNAbin" into the class
"alignment".

Value

an object of class "alignment" in the case of "as.alignment"; an object of class "DNAbin"
in the case of "as.DNAbin"; a matrix of mode character or a list containing vectors of mode char-
acter in the case of "as.character".

as.matching 19

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

DNAbin, read.dna, read.GenBank, write.dna

Examples

data(woodmouse)
x <- as.character(woodmouse)
x[, 1:20]
str(as.alignment(x))
identical(as.DNAbin(x), woodmouse)

as.matching Conversion Between Phylo and Matching Objects

Description

These functions convert objects between the classes "phylo" and "matching".

Usage

as.matching(x, ...)
S3 method for class 'phylo':
as.matching(x, labels = TRUE, ...)
S3 method for class 'matching':
as.phylo(x, ...)

Arguments

x an object to convert as an object of class "matching" or of class "phylo".

labels a logical specifying whether the tip and node labels should be included in the
returned matching.

... further arguments to be passed to or from other methods.

Details

A matching is a representation where each tip and each node are given a number, and sibling groups
are grouped in a “matching pair” (see Diaconis and Holmes 1998, for details). This coding system
can be used only for binary (fully dichotomous) trees.

Diaconis and Holmes (1998) gave some conventions to insure that a given tree has a unique repre-
sentation as a matching. I have tried to follow them in the present functions.

20 as.matching

Value

as.matching returns an object of class "matching" with the following component:

matching a three-column numeric matrix where the first two columns represent the sibling
pairs, and the third one the corresponding ancestor.

tip.label (optional) a character vector giving the tip labels where the ith element is the
label of the tip numbered i in matching.

node.label (optional) a character vector giving the node labels in the same order than in
matching (i.e. the ith element is the label of the node numbered i + n in
matching, with n the number of tips).

as.phylo.matching returns an object of class "phylo".

Note

Branch lengths are not supported in the present version.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Diaconis, P. W. and Holmes, S. P. (1998) Matchings and phylogenetic trees. Proceedings of the
National Academy of Sciences USA, 95, 14600–14602.

See Also

as.phylo

Examples

data(bird.orders)
m <- as.matching(bird.orders)
str(m)
m
tr <- as.phylo(m)
all.equal(tr, bird.orders, use.edge.length = FALSE)

as.phylo 21

as.phylo Conversion Among Tree Objects

Description

as.phylo is a generic function which converts an object into a tree of class "phylo". There
are currently two methods for this generic for objects of class "hclust" and of class "phylog"
(implemented in the package ade4). as.hclust.phylo is a method of the generic as.hclust
which converts an object of class "phylo" into one of class "hclust". This can used to convert
an object of class "phylo" into one of class "dendrogram" (see examples).

old2new.phylo and new2old.phylo are utility functions for converting between the old and
new coding of the class "phylo".

Usage

as.phylo(x, ...)
S3 method for class 'hclust':
as.phylo(x, ...)
S3 method for class 'phylog':
as.phylo(x, ...)
S3 method for class 'phylo':
as.hclust(x, ...)
old2new.phylo(phy)
new2old.phylo(phy)

Arguments

x an object to be converted into another class.

... further arguments to be passed to or from other methods.

phy an object of class "phylo".

Value

An object of class "hclust" or "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

hclust, as.hclust, dendrogram, phylog, as.phylo.formula

22 as.phylo.formula

Examples

data(bird.orders)
hc <- as.hclust(bird.orders)
tr <- as.phylo(hc)
identical(bird.orders, tr) # FALSE, but...
all.equal(bird.orders, tr) # ... TRUE

shows the three plots for tree objects:
dend <- as.dendrogram(hc)
layout(matrix(c(1:3, 3), 2, 2))
plot(bird.orders, font = 1)
plot(hc)
par(mar = c(8, 0, 0, 0)) # leave space for the labels
plot(dend)

how to get (nearly) identical plots with
plot.phylo and plot.dendrogram:
layout(matrix(1:2, 2, 1))
plot(bird.orders, font = 1, no.margin = TRUE)
par(mar = c(0, 0, 0, 8))
plot((dend), horiz = TRUE)
layout(matrix(1, 1, 1))

as.phylo.formula Conversion from Taxonomy Variables to Phylogenetic Trees

Description

The function as.phylo.formula (short form as.phylo) builds a phylogenetic tree (an object
of class phylo) from a set of nested taxonomic variables.

Usage

S3 method for class 'formula':
as.phylo(x, data = parent.frame(), ...)

Arguments

x a right-side formula describing the taxonomic relationship: ~C1/C2/.../Cn.

data the data.frame where to look for the variables (default to environment).

... further arguments to be passed from other methods.

Details

Taxonomic variables must be nested and passed in the correct order: the higher clade must be on
the left of the formula, for instance ~Order/Family/Genus/Species. In most cases, the
resulting tree will be unresolved and contain polytomies.

axisPhylo 23

Value

An object of class phylo.

Author(s)

Julien Dutheil 〈Julien.Dutheil@univ-montp2.fr〉

See Also

as.phylo, read.tree for a description of phylo objects, multi2di

Examples

data(carnivora)
plot(as.phylo(~SuperFamily/Family/Genus/Species, data=carnivora))

axisPhylo Axis on Side of Phylogeny

Description

This function adds a scaled axis on the side of a phylogeny plot.

Usage

axisPhylo(side = 1, ...)

Arguments

side a numeric value specifying the side where the axis is plotted: 1: below, 2: left,
3: above, 4: right.

... further arguments to be passed to axis.

Details

The further arguments (...) are used to format the axis. They may be font, cex, col, las, and
so on (see the help pages on axis and par).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

plot.phylo, add.scale.bar, axis, par

24 balance

Examples

tr <- rtree(30)
ch <- rcoal(30)
plot(ch)
axisPhylo()
plot(tr, "c", FALSE, direction = "u")
axisPhylo(2, las = 1)

balance Balance of a Dichotomous Phylogenetic Tree

Description

This function computes the balance of a phylogenetic tree, that is for each node of the tree the num-
bers of descendants (i.e. tips) on each of its daughter-branch. The tree must be fully dichotomous.

Usage

balance(phy)

Arguments

phy an object of class "phylo".

Value

a numeric matrix with two columns and one row for each node of the tree. The columns give the
numbers of descendants on each daughter-branches (the order of both columns being arbitrary). If
the phylogeny phy has an element node.label, this is used as rownames for the returned matrix;
otherwise the numbers (of mode character) of the matrix edge of phy are used as rownames.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Aldous, D. J. (2001) Stochastic models and descriptive statistics for phylogenetic trees, from Yule
to today. Statistical Science, 16, 23–34.

base.freq 25

base.freq Base frequencies from DNA Sequences

Description

This function computes the relative frequencies (i.e. percentages) of the four DNA bases (adenine,
cytosine, guanine, and thymidine) from a sample of sequences.

Usage

base.freq(x)

Arguments

x a vector, a matrix, or a list which contains the DNA sequences.

Details

The base frequencies are computed over all sequences in the sample. All missing or unknown sites
are discarded from the computations.

Value

A numeric vector stoting the relative frequencies with names c("a", "c", "g", "t").

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

GC.content, seg.sites, nuc.div, DNAbin

bd.ext Extended Version of the Birth-Death Models to Estimate Speciation
and Extinction Rates

Description

This function fits by maximum likelihood a birth-death model to the combined phylogenetic and
taxonomic data of a given clade. The phylogenetic data are given by a tree, and the taxonomic data
by the number of species for the its tips.

Usage

bd.ext(phy, S)

26 bd.ext

Arguments

phy an object of class "phylo".

S a numeric vector giving the number of species for each tip.

Details

A re-parametrization of the birth-death model studied by Kendall (1948) so that the likelihood has
to be maximized over d/b and b - d, where b is the birth rate, and d the death rate.

The standard-errors of the estimated parameters are computed using a normal approximation of the
maximum likelihood estimates.

If the argument S has names, then they are matched to the tip labels of phy. The user must be
careful here since the function requires that both series of names perfectly match, so this operation
may fail if there is a typing or syntax error. If both series of names do not match, the values S are
taken to be in the same order than the tip labels of phy, and a warning message is issued.

Note that the function does not check that the tree is effectively ultrametric, so if it is not, the
returned result may not be meaningful.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. (2003) Analysis of diversification: combining phylogenetic and taxonomic data. Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences, 270, 2499–2505.

See Also

birthdeath, branching.times, diversi.gof, diversi.time, ltt.plot, yule,
yule.cov

Examples

An example from Paradis (2003) using the avian orders:
data(bird.orders)
Number of species in each order from Sibley and Monroe (1990):
S <- c(10, 47, 69, 214, 161, 17, 355, 51, 56, 10, 39, 152,

6, 143, 358, 103, 319, 23, 291, 313, 196, 1027, 5712)
bd.ext(bird.orders, S)

bind.tree 27

bind.tree Binds Trees

Description

This function binds together two phylogenetic trees to give a single object of class "phylo".

Usage

bind.tree(x, y, where = "root", position = 0)

Arguments

x an object of class "phylo".

y an object of class "phylo".

where an) integer giving the number of the node or tip of the tree x where the tree y is
binded ("root" is a short-cut for the root).

position a numeric value giving the position from the tip or node given by node where
the tree y is binded; negative values are ignored.

Details

The argument x can be seen as the receptor tree, whereas y is the donor tree. The root of y is then
sticked on a location of x specified by where and, possibly, position. If y has a root edge, this
is added as in internal branch in the resulting tree.

Value

an object of class "phylo".

Note

For the moment, this function handles only trees with branch lengths, and does not handle node
labels.

Further testing/improvements may be needed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

drop.tip, root

28 BIONJ

Examples

binds the two clades of bird orders
cat("((Struthioniformes:21.8,Tinamiformes:21.8):4.1,",

"((Craciformes:21.6,Galliformes:21.6):1.3,Anseriformes:22.9):3.0):2.1;",
file = "ex1.tre", sep = "\n")

cat("(Turniciformes:27.0,(Piciformes:26.3,((Galbuliformes:24.4,",
"((Bucerotiformes:20.8,Upupiformes:20.8):2.6,",
"(Trogoniformes:22.1,Coraciiformes:22.1):1.3):1.0):0.6,",
"(Coliiformes:24.5,(Cuculiformes:23.7,(Psittaciformes:23.1,",
"(((Apodiformes:21.3,Trochiliformes:21.3):0.6,",
"(Musophagiformes:20.4,Strigiformes:20.4):1.5):0.6,",
"((Columbiformes:20.8,(Gruiformes:20.1,Ciconiiformes:20.1):0.7):0.8,",
"Passeriformes:21.6):0.9):0.6):0.6):0.8):0.5):1.3):0.7):1.0;",
file = "ex2.tre", sep = "\n")

tree.bird1 <- read.tree("ex1.tre")
tree.bird2 <- read.tree("ex2.tre")
unlink(c("ex1.tre", "ex2.tre")) # clean-up
birds <- bind.tree(tree.bird1, tree.bird2, where = "root",

position = tree.bird1$root.edge)
birds
layout(matrix(c(1, 2, 3, 3), 2, 2))
plot(tree.bird1)
plot(tree.bird2)
plot(birds)
layout(matrix(1))

BIONJ Tree Estimation Based on an Improved Version of the NJ Algorithm

Description

This function performs the BIONJ algorithm of Gascuel (1997).

Usage

bionj(X)

Arguments

X a distance matrix; may be an object of class "dist".

Value

an object of class "phylo".

Author(s)

original C code by Hoa Sien Cuong and Olivier Gascuel; adapted and ported to R by Vincent Lefort
〈vincent.lefort@lirmm.fr〉

bird.families 29

References

Gascuel, O. (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of
sequence data. Molecular Biology and Evolution, 14:, 685–695.

See Also

nj, fastme, write.tree, read.tree, dist.dna, mlphylo

Examples

From Saitou and Nei (1987, Table 1):
x <- c(7, 8, 11, 13, 16, 13, 17, 5, 8, 10, 13,

10, 14, 5, 7, 10, 7, 11, 8, 11, 8, 12,
5, 6, 10, 9, 13, 8)

M <- matrix(0, 8, 8)
M[row(M) > col(M)] <- x
M[row(M) < col(M)] <- x
rownames(M) <- colnames(M) <- 1:8
tr <- bionj(M)
plot(tr, "u")
a less theoretical example
data(woodmouse)
trw <- bionj(dist.dna(woodmouse))
plot(trw)

bird.families Phylogeny of the Families of Birds From Sibley and Ahlquist

Description

This data set describes the phylogenetic relationships of the families of birds as reported by Sibley
and Ahlquist (1990). Sibley and Ahlquist inferred this phylogeny from an extensive number of
DNA/DNA hybridization experiments. The “tapestry” reported by these two authors (more than
1000 species out of the ca. 9000 extant bird species) generated a lot of debates.

The present tree is based on the relationships among families. A few families were not included in
the figures in Sibley and Ahlquist, and thus are not included here as well. The branch lengths were
calculated from the values of ∆T50H as found in Sibley and Ahlquist (1990, figs. 354, 355, 356,
and 369).

Usage

data(bird.families)

Format

The data are stored as an object of class "phylo" which structure is described in the help page of
the function read.tree.

30 bird.orders

Source

Sibley, C. G. and Ahlquist, J. E. (1990) Phylogeny and classification of birds: a study in molecular
evolution. New Haven: Yale University Press.

See Also

read.tree, bird.orders

Examples

data(bird.families)
op <- par()
par(cex = 0.3)
plot(bird.families)
par(op)

bird.orders Phylogeny of the Orders of Birds From Sibley and Ahlquist

Description

This data set describes the phylogenetic relationships of the orders of birds as reported by Sibley
and Ahlquist (1990). Sibley and Ahlquist inferred this phylogeny from an extensive number of
DNA/DNA hybridization experiments. The “tapestry” reported by these two authors (more than
1000 species out of the ca. 9000 extant bird species) generated a lot of debates.

The present tree is based on the relationships among orders. The branch lengths were calculated
from the values of ∆T50H as found in Sibley and Ahlquist (1990, fig. 353).

Usage

data(bird.orders)

Format

The data are stored as an object of class "phylo" which structure is described in the help page of
the function read.tree.

Source

Sibley, C. G. and Ahlquist, J. E. (1990) Phylogeny and classification of birds: a study in molecular
evolution. New Haven: Yale University Press.

See Also

read.tree, bird.families

birthdeath 31

Examples

data(bird.orders)
plot(bird.orders)

birthdeath Estimation of Speciation and Extinction Rates With Birth-Death Mod-
els

Description

This function fits by maximum likelihood a birth-death model to the branching times computed
from a phylogenetic tree using the method of Nee et al. (1994).

Usage

birthdeath(phy)
S3 method for class 'birthdeath':
print(x, ...)

Arguments

phy an object of class "phylo".

x an object of class "birthdeath".

... further arguments passed to the print function.

Details

Nee et al. (1994) used a re-parametrization of the birth-death model studied by Kendall (1948) so
that the likelihood has to be maximized over d/b and b - d, where b is the birth rate, and d the death
rate. This is the approach used by the present function.

This function computes the standard-errors of the estimated parameters using a normal approxima-
tions of the maximum likelihood estimates: this is likely to be inaccurate because of asymmetries of
the likelihood function (Nee et al. 1995). In addition, 95 intervals of both parameters are computed
using profile likelihood: they are particularly useful if the estimate of d/b is at the boundary of the
parameter space (i.e. 0, which is often the case).

Note that the function does not check that the tree is effectively ultrametric, so if it is not, the
returned result may not be meaningful.

Value

An object of class "birthdeath" which is a list with the following components:

tree the name of the tree analysed.

N the number of species.

dev the deviance (= -2 log lik) at its minimum.

para the estimated parameters.

32 boot.phylo

se the corresponding standard-errors.

CI the 95% profile-likelihood confidence intervals.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Kendall, D. G. (1948) On the generalized “birth-and-death” process. Annals of Mathematical Statis-
tics, 19, 1–15.

Nee, S., May, R. M. and Harvey, P. H. (1994) The reconstructed evolutionary process. Philosophical
Transactions of the Royal Society of London. Series B. Biological Sciences, 344, 305–311.

Nee, S., Holmes, E. C., May, R. M. and Harvey, P. H. (1995) Estimating extinctions from molec-
ular phylogenies. in Extinction Rates, eds. Lawton, J. H. and May, R. M., pp. 164–182, Oxford
University Press.

See Also

branching.times, diversi.gof, diversi.time, ltt.plot, yule, bd.ext, yule.cov

boot.phylo Tree Bipartition and Bootstrapping Phylogenies

Description

These functions analyse bipartitions found in a series of trees.

prop.part counts the number of bipartitions found in a series of trees given as

prop.clades counts the number of times the bipartitions present in phy are present in a series
of trees given as ... or in the list previously computed and given with part.

boot.phylo performs a bootstrap analysis.

Usage

boot.phylo(phy, x, FUN, B = 100, block = 1, trees = FALSE)
prop.part(..., check.labels = FALSE)
prop.clades(phy, ..., part = NULL)
S3 method for class 'prop.part':
print(x, ...)
S3 method for class 'prop.part':
summary(object, ...)
S3 method for class 'prop.part':
plot(x, barcol = "blue", leftmar = 4, ...)

boot.phylo 33

Arguments

phy an object of class "phylo".

x in the case of boot.phylo: a taxa (rows) by characters (columns) matrix; this
may be presented as a list; in the case of print and plot: an object of class
"prop.part".

FUN the function used to estimate phy (see details).

B the number of bootstrap replicates.

block the number of columns in x that will be resampled together (see details).

trees a logical specifying whether to return the bootstraped trees (FALSE by default).

... either (i) a single object of class "phylo", (ii) a series of such objects separated
by commas, or (iii) a list containing such objects. In the case of plot further
arguments for the plot (see details).

check.labels a logical specifying whether to check the labels of each tree. If FALSE (the
default), it is assumed that all trees have the same tip labels, and that they are in
the same order (see details).

part a list of partitions as returned by prop.part; if this is used then ... is
ignored.

object an object of class "prop.part".

barcol the colour used for the bars displaying the number of partitions in the upper
panel.

leftmar the size of the margin on the left to display the tip labels.

Details

The argument FUN in boot.phylomust be the function used to estimate the tree from the original
data matrix. Thus, if the tree was estimated with neighbor-joining (see nj), one maybe wants
something like FUN = function(xx) nj(dist.dna(xx)).

block in boot.phylo specifies the number of columns to be resampled altogether. For instance,
if one wants to resample at the codon-level, then block = 3 must be used.

Using (the default) check.labels = FALSE in prop.part results in considerable decrease
in computing times. This requires that (i) all trees have the same tip labels, and (ii) these labels are
ordered similarly in all trees (in other words, the element tip.label are identical in all trees).

The plot function represents a contingency table of the different partitions (on the x-axis) in the
lower panel, and their observed numbers in the upper panel. Any further arguments (. . .) are used
to change the aspects of the points in the lower panel: these may be pch, col, bg, cex, etc. This
function works only if there is an attribute labels in the object.

The print method displays the partitions and their numbers. The summary method extracts the
numbers only.

Value

prop.part returns an object of class "prop.part"which is a list with an attribute "number".
The elements of this list are the observed clades, and the attribute their respective numbers. If the

34 boot.phylo

default check.labels = FALSE is used, an attribute "labels" is added, and the vectors of
the returned object contains the indices of these labels instead of the labels themselves.

prop.clades and boot.phylo return a numeric vector which ith element is the number asso-
ciated to the ith node of phy. If trees = TRUE, boot.phylo returns a list whose first element
(named "BP") is like before, and the second element ("trees") is a list with the bootstraped
trees.

summary returns a numeric vector.

Note

prop.clades calls internally prop.part with the option check.labels = TRUE, which
may be very slow. If the trees passed as ... fulfills conditions (i) and (ii) above, then it might be
faster to first call, e.g., pp <- prop.part(...), then use the option part: prop.clades(phy,
part = pp).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Efron, B., Halloran, E. and Holmes, S. (1996) Bootstrap confidence levels for phylogenetic trees.
Proceedings of the National Academy of Sciences USA, 93, 13429–13434.

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolu-
tion, 39, 783–791.

See Also

dist.topo, consensus, nodelabels

Examples

data(woodmouse)
tr <- nj(dist.dna(woodmouse))
Are bootstrap values stable?
for (i in 1:5)
print(boot.phylo(tr, woodmouse, function(xx) nj(dist.dna(xx))))

How many partitions in 100 random trees of 10 labels?...
TR <- replicate(100, rtree(10), FALSE)
pp10 <- prop.part(TR)
length(pp10)
... and in 100 random trees of 20 labels?
TR <- replicate(100, rtree(20), FALSE)
pp20 <- prop.part(TR)
length(pp20)
plot(pp10, pch = "x", col = 2)
plot(pp20, pch = "x", col = 2)

branching.times 35

branching.times Branching Times of a Phylogenetic Tree

Description

This function computes the branching times of a phylogenetic tree, that is the distance from each
node to the tips, under the assumption that the tree is ultrametric. Note that the function does not
check that the tree is effectively ultrametric, so if it is not, the returned result may not be meaningful.

Usage

branching.times(phy)

Arguments

phy an object of class "phylo".

Value

a numeric vector with the branching times. If the phylogeny phy has an element node.label,
this is used as names for the returned vector; otherwise the numbers (of mode character) of the
matrix edge of phy are used as names.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

is.ultrametric

carnivora Carnivora body sizes and life history traits

Description

Dataset adapted from Gittleman (1986), including 2 morphological variables (body and brain sizes),
8 life history traits variables and 4 taxonomic variables.

Usage

data(carnivora)

Format

A data frame with 112 observations on 17 variables.

36 cherry

[,1] Order factor Carnivora order
[,2] SuperFamily factor Super family (Caniformia or Feliformia)
[,3] Family factor Carnivora family
[,4] Genus factor Carnivora genus
[,5] Species factor Carnivora species
[,6] FW numeric Female body weight (kg)
[,7] SW numeric Average body weight of adult male and adult female (kg)
[,8] FB numeric Female brain weight (g)
[,9] SB numeric Average brain weight of adult male and adult female (g)

[,10] LS numeric Litter size
[,11] GL numeric Gestation length (days)
[,12] BW numeric Birth weigth (g)
[,13] WA numeric Weaning age (days)
[,14] AI numeric Age of independance (days)
[,15] LY numeric Longevity (months)
[,16] AM numeric Age of sexual maturity (days)
[,17] IB numeric Inter-birth interval (months)

Source

Gittleman, J. L. (1986) Carnivore life history patterns: allometric, phylogenetic and ecological
associations. American Naturalist, 127: 744–771.

Examples

data(carnivora);
This is figure 1 of Gittleman 1986:
library(lattice)
trellis.device(color=FALSE)
xyplot(BW ~ FW, groups=Family, data=carnivora, auto.key=TRUE, xlog=TRUE,

scale=list(log=TRUE), ylim=c(1, 2000))
trellis.device(color=FALSE)
xyplot(BW ~ FB, groups=Family, data=carnivora, auto.key=TRUE, xlog=TRUE,

scale=list(log=TRUE), ylim=c(1, 2000))

cherry Number of Cherries and Null Models of Trees

Description

This function calculates the number of cherries (see definition below) on a phylogenetic tree, and
tests the null hypotheses whether this number agrees with those predicted from two null models of
trees (the Yule model, and the uniform model).

Usage

cherry(phy)

chiroptera 37

Arguments

phy an object of class "phylo".

Details

A cherry is a pair of adjacent tips on a tree. The tree can be either rooted or unrooted, but the present
function considers only rooted trees. The probability distribution function of the number of cherries
on a tree depends on the speciation/extinction model that generated the tree.

McKenzie and Steel (2000) derived the probability distribution function of the number of cherries
for two models: the Yule model and the uniform model. Broadly, in the Yule model, each extant
species is equally likely to split into two daughter-species; in the uniform model, a branch is added
to tree on any of the already existing branches with a uniform probability.

The probabilities are computed using recursive formulae; however, for both models, the probability
density function converges to a normal law with increasing number of tips in the tree. The function
uses these normal approximations for a number of tips greater than or equal to 20.

Value

A NULL value is returned, the results are simply printed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

McKenzie, A. and Steel, M. (2000) Distributions of cherries for two models of trees. Mathematical
Biosciences, 164, 81–92.

See Also

gammaStat

chiroptera Bat Phylogeny

Description

This phylogeny of bats (Mammalia: Chiroptera) is a supertree (i.e. a composite phylogeny con-
structed from several sources; see source for details).

Usage

data(chiroptera)

38 chronoMPL

Format

The data are stored in RData (binary) format.

Source

Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P. and Simmons, N. B. (2002) A
phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews of the Cambridge
Philosophical Society, 77, 223–259.

See Also

read.nexus, zoom

Examples

data(chiroptera)
str(chiroptera)
op <- par()
par(cex = 0.3)
plot(chiroptera, type = "c")
par(op)

chronoMPL Molecular Dating With Mean Path Lengths

Description

This function estimates the node ages of a tree using the mean path lengths method of Britton et al.
(2002). The branch lengths of the input tree are interpreted as (mean) numbers of substitutions.

Usage

chronoMPL(phy, se = TRUE, test = TRUE)

Arguments

phy an object of class "phylo".

se a logical specifying whether to compute the standard-errors of the node ages
(TRUE by default).

test a logical specifying whether to test the molecular clock at each node (TRUE by
default).

chronoMPL 39

Details

The mean path lengths (MPL) method estimates the age of a node with the mean of the distances
from this node to all tips descending from it. Under the assumption of a molecular clock, standard-
errors of the estimates node ages can be computed (Britton et al. 2002).

The tests performed if test = TRUE is a comparison of the MPL of the two subtrees originating
from a node; the null hypothesis is that the rate of substitution was the same in both subtrees (Britton
et al. 2002). The test statistic follows, under the null hypothesis, a standard normal distribution.
The returned P-value is the probability of observing a greater absolute value (i.e., a two-sided test).
No correction for multiple testing is applied: this is left to the user.

Absolute dating can be done by multiplying the edge lengths found by calibrating one node age.

Value

an object of class "phylo"with branch lengths as estimated by the function. There are, by default,
two attributes:

stderr the standard-errors of the node ages.

Pval the P-value of the test of the molecular clock for each node.

Note

The present version requires a dichotomous tree.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Britton, T., Oxelman, B., Vinnersten, A. and Bremer, K. (2002) Phylogenetic dating with confidence
intervals using mean path lengths. Molecular Phylogenetics and Evolution, 24, 58–65.

See Also

chronogram, ratogram, NPRS.criterion, chronopl

Examples

tr <- rtree(10)
tr$edge.length <- 5*tr$edge.length
chr <- chronoMPL(tr)
layout(matrix(1:4, 2, 2, byrow = TRUE))
plot(tr)
title("The original tree")
plot(chr)
axisPhylo()
title("The dated MPL tree")
plot(chr)
nodelabels(round(attr(chr, "stderr"), 3))

40 chronogram

title("The standard-errors")
plot(tr)
nodelabels(round(attr(chr, "Pval"), 3))
title("The tests")

chronogram Chronogram Computed by Nonparametric Rate Smoothing

Description

chronogram computes a chronogram from a phylogram by applying the NPRS (nonparametric
rate smoothing) algorithm described in Sanderson (1997).

Usage

chronogram(phy, scale = 1, expo = 2, minEdgeLength = 1e-06)

Arguments

phy A phylogenetic tree (i.e. an object of class "phylo"), where the branch lengths
are measured in substitutions.

scale Age of the root in the inferred chronogram (default value: 0).

expo Exponent in the objective function (default value: 2)
minEdgeLength

Minimum edge length in the phylogram (default value: 1e-06). If any branch
lengths are smaller then they will be set to this value.

Details

Please refer to Sanderson (1997) for mathematical details

Value

chronogram returns an object of class "phylo". The branch lengths of this tree will be clock-
like and scaled so that the root node has age 1 (or the value set by the option scale

Author(s)

Gangolf Jobb (http://www.treefinder.de) and Korbinian Strimmer (http://www.stat.
uni-muenchen.de/~strimmer/)

References

Sanderson, M. J. (1997) A nonparametric approach to estimating divergence times in the absence
of rate constancy. Molecular Biology and Evolution, 14, 1218–1231.

http://www.treefinder.de
http://www.stat.uni-muenchen.de/~strimmer/
http://www.stat.uni-muenchen.de/~strimmer/

chronopl 41

See Also

ratogram, NPRS.criterion.

Examples

get tree
data("landplants.newick") # example tree in NH format
tree.landplants <- read.tree(text = landplants.newick)

plot tree
tree.landplants
plot(tree.landplants, label.offset = 0.001)

estimate chronogram
chrono.plants <- chronogram(tree.landplants)

plot
plot(chrono.plants, label.offset = 0.001)

value of NPRS function for our estimated chronogram
NPRS.criterion(tree.landplants, chrono.plants)

chronopl Molecular Dating With Penalized Likelihood

Description

This function estimates the node ages of a tree using a semi-parametric method based on penalized
likelihood (Sanderson 2002). The branch lengths of the input tree are interpreted as mean numbers
of substitutions (i.e., per site).

Usage

chronopl(phy, lambda, age.min = 1, age.max = NULL,
node = "root", S = 1, tol = 1e-8,
CV = FALSE, eval.max = 500, iter.max = 500, ...)

Arguments

phy an object of class "phylo".

lambda value of the smoothing parameter.

age.min numeric values specifying the fixed node ages (if age.max = NULL) or the
youngest bound of the nodes known to be within an interval.

age.max numeric values specifying the oldest bound of the nodes known to be within an
interval.

node the numbers of the nodes whose ages are given by age.min; "root" is a
short-cut for the root.

42 chronopl

S the number of sites in the sequences; leave the default if branch lengths are in
mean number of substitutions.

tol the value below which branch lengths are considered effectively zero.

CV whether to perform cross-validation.

eval.max the maximal number of evaluations of the penalized likelihood function.

iter.max the maximal number of iterations of the optimization algorithm.

... further arguments passed to control nlminb.

Details

The idea of this method is to use a trade-off between a parametric formulation where each branch
has its own rate, and a nonparametric term where changes in rates are minimized between contigu-
ous branches. A smoothing parameter (lambda) controls this trade-off. If lambda = 0, then the
parametric component dominates and rates vary as much as possible among branches, whereas for
increasing values of lambda, the variation are smoother to tend to a clock-like model (same rate for
all branches).

lambda must be given. The known ages are given in age.min, and the correponding node
numbers in node. These two arguments must obviously be of the same length. By default, an
age of 1 is assumed for the root, and the ages of the other nodes are estimated.

If age.max = NULL (the default), it is assumed that age.min gives exactly known ages. Oth-
erwise, age.max and age.min must be of the same length and give the intervals for each node.
Some node may be known exactly while the others are known within some bounds: the values
will be identical in both arguments for the former (e.g., age.min = c(10, 5), age.max =
c(10, 6), node = c(15, 18) means that the age of node 15 is 10 units of time, and the
age of node 18 is between 5 and 6).

The input tree may have multichotomies. If some internal branches are of zero-length, they are
collapsed (with a warning), and the returned tree will have less nodes than the input one. The
presence of zero-lengthed terminal branches of results in an error since it makes little sense to have
zero-rate branches.

The cross-validation used here is different from the one proposed by Sanderson (2002). Here, each
tip is dropped successively and the analysis is repeated with the reduced tree: the estimated dates
for the remaining nodes are compared with the estimates from the full data. For the ith tip the
following is calculated:

n−2∑
j=1

(tj − t−i
j)2

tj

,

where tj is the estimated date for the jth node with the full phylogeny, t−i
j is the estimated date for

the jth node after removing tip i from the tree, and n is the number of tips.

The present version uses the nlminb to optimise the penalized likelihood function: see its help
page for details on parameters controlling the optimisation procedure.

coalescent.intervals 43

Value

an object of class "phylo" with branch lengths as estimated by the function. There are three or
four further attributes:

ploglik the maximum penalized log-likelihood.

rates the estimated rates for each branch.

message the message returned by nlminb indicating whether the optimisation converged.

D2 the influence of each observation on overall date estimates (if CV = TRUE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Sanderson, M. J. (2002) Estimating absolute rates of molecular evolution and divergence times: a
penalized likelihood approach. Molecular Biology and Evolution, 19, 101–109.

See Also

chronogram, ratogram, NPRS.criterion, chronoMPL

coalescent.intervals
Coalescent Intervals

Description

This function extracts or generates information about coalescent intervals (number of lineages, in-
terval lengths, interval count, total depth) from a phylogenetic tree or a list of internode distances.
The input tree needs to be ultra-metric (i.e. clock-like).

Usage

coalescent.intervals(x)

Arguments

x either an ultra-metric phylogenetic tree (i.e. an object of class "phylo") or,
alternatively, a vector of interval lengths.

44 collapse.singles

Value

An object of class "coalescentIntervals" with the following entries:

lineages A vector with the number of lineages at the start of each coalescent interval.
interval.length

A vector with the length of each coalescent interval.
interval.count

The total number of coalescent intervals.

total.depth The sum of the lengths of all coalescent intervals.

Author(s)

Korbinian Strimmer (http://www.stat.uni-muenchen.de/~strimmer/)

See Also

branching.times, collapsed.intervals, read.tree.

Examples

data("hivtree.newick") # example tree in NH format
tree.hiv <- read.tree(text = hivtree.newick) # load tree

ci <- coalescent.intervals(tree.hiv) # from tree
ci

data("hivtree.table") # same tree, but in table format
ci <- coalescent.intervals(hivtree.table$size) # from vector of interval lengths
ci

collapse.singles Collapse Single Nodes

Description

This function deletes the single nodes (i.e., with a single descendant) in a tree.

Usage

collapse.singles(tree)

Arguments

tree an object of class "phylo".

Value

an object of class "phylo".

http://www.stat.uni-muenchen.de/~strimmer/

collapsed.intervals 45

Author(s)

Ben Bolker 〈bolker@zoo.ufl.edu〉

See Also

plot.phylo, read.tree

collapsed.intervals
Collapsed Coalescent Intervals

Description

This function takes a "coalescentIntervals" objects and collapses neighbouring coalescent
intervals into a single combined interval so that every collapsed interval is larger than epsilon.
Collapsed coalescent intervals are used, e.g., to obtain the generalized skyline plot (skyline). For
epsilon = 0 no interval is collapsed.

Usage

collapsed.intervals(ci, epsilon=0)

Arguments

ci coalescent intervals (i.e. an object of class "coalescentIntervals").

epsilon collapsing parameter that controls the amount of smoothing (allowed range:
from 0 to ci$total.depth)

Details

Proceeding from the tips to the root of the tree each small interval is pooled with the neighboring
interval closer to the root. If the neighboring interval is also small, then pooling continues until
the composite interval is larger than epsilon. Note that this approach prevents the occurrence of
zero-length intervals at the present. For more details see Strimmer and Pybus (2001).

Value

An object of class "collapsedIntervals" with the following entries:

lineages A vector with the number of lineages at the start of each coalescent interval.
interval.length

A vector with the length of each coalescent interval.
collapsed.interval

A vector indicating for each coalescent interval to which collapsed interval it
belongs.

interval.count
The total number of coalescent intervals.

46 compar.cheverud

collapsed.interval.count
The number of collapsed intervals.

total.depth The sum of the lengths of all coalescent intervals.

epsilon The value of the underlying smoothing parameter.

Author(s)

Korbinian Strimmer (http://www.stat.uni-muenchen.de/~strimmer/)

References

Strimmer, K. and Pybus, O. G. (2001) Exploring the demographic history of DNA sequences using
the generalized skyline plot. Molecular Biology and Evolution, 18, 2298–2305.

See Also

coalescent.intervals,skyline.

Examples

data("hivtree.table") # example tree

colescent intervals from vector of interval lengths
ci <- coalescent.intervals(hivtree.table$size)
ci

collapsed intervals
cl1 <- collapsed.intervals(ci,0)
cl2 <- collapsed.intervals(ci,0.0119)

cl1
cl2

compar.cheverud Cheverud’s Comparative Method

Description

This function computes the phylogenetic variance component and the residual deviation for con-
tinous characters, taking into account the phylogenetic relationships among species, following the
comparative method described in Cheverud et al. (1985). The correction proposed by Rholf (2001)
is used.

Usage

compar.cheverud(y, W, tolerance = 1e-06, gold.tol = 1e-04)

http://www.stat.uni-muenchen.de/~strimmer/

compar.cheverud 47

Arguments

y A vector containing the data to analyse.

W The phylogenetic connectivity matrix. All diagonal elements will be ignored.

tolerance Minimum difference allowed to consider eigenvalues as distinct.

gold.tol Precision to use in golden section search alogrithm.

Details

Model:

y = ρWy + e

where e is the error term, assumed to be normally distributed. ρ is estimated by the maximum
likelihood procedure given in Rohlf (2001), using a golden section search algorithm. The code of
this function is indeed adapted from a MatLab code given in appendix in Rohlf’s article, to correct
a mistake in Cheverud’s original paper.

Value

A list with the following components:

rhohat The maximum likelihood estimate of ρ

Wnorm The normalized version of W

residuals Error terms (e)

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Cheverud, J. M., Dow, M. M. and Leutenegger, W. (1985) The quantitative assessment of phylo-
genetic constraints in comparative analyses: sexual dimorphism in body weight among primates.
Evolution, 39, 1335–1351.

Rohlf, F. J. (2001) Comparative methods for the analysis of continuous variables: geometric inter-
pretations. Evolution, 55, 2143–2160.

Harvey, P. H. and Pagel, M. D. (1991) The comparative method in evolutionary biology. Oxford
University Press.

See Also

compar.lynch

48 compar.gee

Examples

Example from Harvey and Pagel's book:
Not run:
y<-c(10,8,3,4)
W <- matrix(c(1,1/6,1/6,1/6,1/6,1,1/2,1/2,1/6,1/2,1,1,1/6,1/2,1,1), 4)
compar.cheverud(y,W)
End(Not run)
Example from Rohlf's 2001 article:
W<- matrix(c(
0,1,1,2,0,0,0,0,
1,0,1,2,0,0,0,0,
1,1,0,2,0,0,0,0,
2,2,2,0,0,0,0,0,
0,0,0,0,0,1,1,2,
0,0,0,0,1,0,1,2,
0,0,0,0,1,1,0,2,
0,0,0,0,2,2,2,0

),8)
W <- 1/W
W[W == Inf] <- 0
y<-c(-0.12,0.36,-0.1,0.04,-0.15,0.29,-0.11,-0.06)
compar.cheverud(y,W)

compar.gee Comparative Analysis with GEEs

Description

compar.gee performs the comparative analysis using generalized estimating equations as de-
scribed by Paradis and Claude (2002).

drop1 tests single effects of a fitted model output from compar.gee.

Usage

compar.gee(formula, data = NULL, family = "gaussian", phy,
scale.fix = FALSE, scale.value = 1)

S3 method for class 'compar.gee':
drop1(object, scope, quiet = FALSE, ...)

Arguments

formula a formula giving the model to be fitted.

data the name of the data frame where the variables in formula are to be found; by
default, the variables are looked for in the global environment.

family a character string specifying the distribution assumed for the response; by de-
fault a Gaussian distribution (with link identity) is assumed (see ?family for
details on specifying the distribution, and on changing the link function).

compar.gee 49

phy an object of class "phylo".

scale.fix logical, indicates whether the scale parameter should be fixed (TRUE) or esti-
mated (FALSE, the default).

scale.value if scale.fix = TRUE, gives the value for the scale (default: scale.value
= 1).

object an object of class "compar.gee" resulting from fitting compar.gee.

scope <unused>.

quiet a logical specifying whether to display a warning message about eventual “marginal-
ity principle violation”.

... further arguments to be passed to drop1.

Details

If a data frame is specified for the argument data, then its rownames are matched to the tip labels
of phy. The user must be careful here since the function requires that both series of names perfectly
match, so this operation may fail if there is a typing or syntax error. If both series of names do not
match, the values in the data frame are taken to be in the same order than the tip labels of phy, and
a warning message is issued.

If data = NULL, then it is assumed that the variables are in the same order than the tip labels of
phy.

Value

compar.gee returns an object of class "compar.gee" with the following components:

call the function call, including the formula.

nobs the number of observations.

coefficients the estimated coefficients (or regression parameters).

residuals the regression residuals.

family a character string, the distribution assumed for the response.

link a character string, the link function used for the mean function.

scale the scale (or dispersion parameter).

W the variance-covariance matrix of the estimated coefficients.

dfP the phylogenetic degrees of freedom (see Paradis and Claude for details on this).

drop1 returns an object of class "anova".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. and Claude J. (2002) Analysis of comparative data using generalized estimating equa-
tions. Journal of theoretical Biology, 218, 175–185.

50 compar.lynch

See Also

read.tree, pic, compar.lynch, drop1

Examples

The example in Phylip 3.5c (originally from Lynch 1991)
(the same analysis than in help(pic)...)
cat("((((Homo:0.21,Pongo:0.21):0.28,",

"Macaca:0.49):0.13,Ateles:0.62):0.38,Galago:1.00);",
file = "ex.tre", sep = "\n")

tree.primates <- read.tree("ex.tre")
X <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
Y <- c(4.74493, 3.33220, 3.36730, 2.89037, 2.30259)
Both regressions... the results are quite close to those obtained
with pic().
compar.gee(X ~ Y, phy = tree.primates)
compar.gee(Y ~ X, phy = tree.primates)
Now do the GEE regressions through the origin: the results are quite
different!
compar.gee(X ~ Y - 1, phy = tree.primates)
compar.gee(Y ~ X - 1, phy = tree.primates)
unlink("ex.tre") # delete the file "ex.tre"

compar.lynch Lynch’s Comparative Method

Description

This function computes the heritable additive value and the residual deviation for continous charac-
ters, taking into account the phylogenetic relationships among species, following the comparative
method described in Lynch (1991).

Usage

compar.lynch(x, G, eps = 1e-4)

Arguments

x eiher a matrix, a vector, or a data.frame containing the data with species as rows
and variables as columns.

G a matrix that can be interpreted as an among-species correlation matrix.

eps a numeric value to detect convergence of the EM algorithm.

compar.lynch 51

Details

The parameter estimates are computed following the EM (expectation-maximization) algorithm.
This algorithm usually leads to convergence but may lead to local optima of the likelihood function.
It is recommended to run several times the function in order to detect these potential local optima.
The ‘optimal’ value for eps depends actually on the range of the data and may be changed by
the user in order to check the stability of the parameter estimates. Convergence occurs when the
differences between two successive iterations of the EM algorithm leads to differences between
both residual and additive values less than or equal to eps.

Value

A list with the following components:

vare estimated residual variance-covariance matrix.
vara estimated additive effect variance covariance matrix.
u estimates of the phylogeny-wide means.
A addtitive value estimates.
E residual values estimates.
lik logarithm of the likelihood for the entire set of observed taxon-specific mean.

Note

The present function does not perform the estimation of ancestral phentoypes as proposed by Lynch
(1991). This will be implemented in a future version.

Author(s)

Julien Claude 〈claude@isem.univ-montp2.fr〉

References

Lynch, M. (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution,
45, 1065–1080.

See Also

pic, compar.gee

Examples

The example in Lynch (1991)
cat("((((Homo:0.21,Pongo:0.21):0.28,",

"Macaca:0.49):0.13,Ateles:0.62):0.38,Galago:1.00);",
file = "ex.tre", sep = "\n")

tree.primates <- read.tree("ex.tre")
unlink("ex.tre")
X <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
Y <- c(4.74493, 3.33220, 3.36730, 2.89037, 2.30259)
compar.lynch(cbind(X, Y),

G = vcv.phylo(tree.primates, cor = TRUE))

52 compar.ou

compar.ou Ornstein–Uhlenbeck Model for Continuous Characters

Description

This function fits an Ornstein–Uhlenbeck model giving a phylogenetic tree, and a continuous char-
acter. The user specifies the node(s) where the optimum changes. The parameters are estimated by
maximum likelihood; their standard-errors are computed assuming normality of these estimates.

Usage

compar.ou(x, phy, node = NULL, alpha = NULL)

Arguments

x a numeric vector giving the values of a continuous character.

phy an object of class "phylo".

node a vector giving the number(s) of the node(s) where the parameter ‘theta’ (the
character optimum) is assumed to change. By default there is no change (same
optimum thoughout lineages).

alpha the value of α to be used when fitting the model. By default, this parameter is
estimated (see details).

Details

The Ornstein–Uhlenbeck (OU) process can be seen as a generalization of the Brownian motion
process. In the latter, characters are assumed to evolve randomly under a random walk, that is
change is equally likely in any direction. In the OU model, change is more likely towards the
direction of an optimum (denoted θ) with a strength controlled by a parameter denoted α.

The present function fits a model where the optimum parameter θ, is allowed to vary throughout the
tree. This is specified with the argument node: θ changes after each node whose number is given
there. Note that the optimum changes only for the lineages which are descendants of this node.

Hansen (1997) recommends to not estimate α together with the other parameters. The present func-
tion allows this by giving a numeric value to the argument alpha. By default, this parameter is
estimated, but this seems to yield very large standard-errors, thus validating Hansen’s recommen-
dation. In practice, a “poor man estimation” of α can be done by repeating the function call with
different values of alpha, and selecting the one that minimizes the deviance (see Hansen 1997 for
an example).

If x has names, its values are matched to the tip labels of phy, otherwise its values are taken to be
in the same order than the tip labels of phy.

The user must be careful here since the function requires that both series of names perfectly match,
so this operation may fail if there is a typing or syntax error. If both series of names do not match,
the values in the x are taken to be in the same order than the tip labels of phy, and a warning
message is issued.

compar.ou 53

Value

an object of class "compar.ou" which is list with the following components:

deviance the deviance (= -2 * loglik).

para a data frame with the maximum likelihood estimates and their standard-errors.

call the function call.

Note

The inversion of the variance-covariance matrix in the likelihood function appeared as somehow
problematic. The present implementation uses a Cholevski decomposition with the function chol2inv
instead of the usual function solve.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Hansen, T. F. (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution,
51, 1341–1351.

See Also

ace, compar.lynch, corBrownian, corMartins, pic

Examples

Not run:
data(bird.orders)
This is likely to give you estimates close to 0, 1, and 0
for alpha, sigma^2, and theta, respectively:
compar.ou(rnorm(23), bird.orders)
Much better with a fixed alpha:
compar.ou(rnorm(23), bird.orders, alpha = 0.1)
Let us 'mimick' the effect of different optima
for the two clades of birds...
x <- c(rnorm(5, 0), rnorm(18, 5))
... the model with two optima:
compar.ou(x, bird.orders, node = -2, alpha = .1)
... and the model with a single optimum:
compar.ou(x, bird.orders, node = NULL, alpha = .1)
=> Compare both models with the difference in deviances
with follows a chi^2 with df = 1.
End(Not run)

54 compute.brlen

compute.brlen Branch Lengths Computation

Description

This function computes branch lengths of a tree using different methods.

Usage

compute.brlen(phy, method = "Grafen", power = 1, ...)

Arguments

phy an object of class phylo representing the tree.

method the method to be used to compute the branch lengths; this must be one of the
followings: (i) "Grafen" (the default), (ii) a numeric vector, or (iii) a function.

power The power at which heights must be raised (see below).

... further argument(s) to be passed to method if it is a function.

Details

Grafen’s (1989) computation of branch lengths: each node is given a ‘height’, namely the number
of leaves of the subtree minus one, 0 for leaves. Each height is scaled so that root height is 1, and
then raised at power ’rho’ (> 0). Branch lengths are then computed as the difference between height
of lower node and height of upper node.

If one or several numeric values are provided as method, they are recycled if necessary. If a
function is given instead, further arguments are given in place of ... (they must be named, see
examples).

Zero-length branches are not treated as multichotomies, and thus may need to be collapsed (see
di2multi).

Value

An object of class phylo with branch lengths.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉 and Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Grafen, A. (1989) The phylogenetic regression. Philosophical Transactions of the Royal society of
London. Series B. Biological Sciences, 326, 119–157.

See Also

read.tree for a description of phylo objects, di2multi, multi2di

consensus 55

Examples

data(bird.orders)
plot(compute.brlen(bird.orders, 1))
plot(compute.brlen(bird.orders, runif, min = 0, max = 5))
layout(matrix(1:4, 2, 2))
plot(compute.brlen(bird.orders, power=1), main=expression(rho==1))
plot(compute.brlen(bird.orders, power=3), main=expression(rho==3))
plot(compute.brlen(bird.orders, power=0.5), main=expression(rho==0.5))
plot(compute.brlen(bird.orders, power=0.1), main=expression(rho==0.1))
layout(1)

consensus Concensus Trees

Description

Given a series of trees, this function returns the consensus tree. By default, the strict-consensus tree
is computed. To get the majority-rule consensus tree, use p = 0.5. Any value between 0.5 and 1
can be used.

Usage

consensus(..., p = 1, check.labels = FALSE)

Arguments

... either (i) a single object of class "phylo", (ii) a series of such objects separated
by commas, or (iii) a list containing such objects.

p a numeric value between 0.5 and 1 giving the proportion for a clade to be repre-
sented in the consensus tree.

check.labels a logical specifying whether to check the labels of each tree. If FALSE (the
default), it is assumed that all trees have the same tip labels, and that they are in
the same order (see details).

Details

Using (the default) check.labels = FALSE results in considerable decrease in computing
times. This requires that (i) all trees have the same tip labels, and (ii) these labels are ordered
similarly in all trees (in other words, the element tip.label are identical in all trees).

Value

an object of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

56 cophenetic.phylo

See Also

prop.part, dist.topo

cophenetic.phylo Pairwise Distances from a Phylogenetic Tree

Description

cophenetic.phylo computes the pairwise distances between the pairs of tips from a phyloge-
netic tree using its branch lengths.

dist.nodes does the same but between all nodes, internal and terminal, of the tree.

Usage

S3 method for class 'phylo':
cophenetic(x)
dist.nodes(x)

Arguments

x an object of class "phylo".

Value

a numeric matrix with colnames and rownames set to the names of the tips (as given by the element
tip.label of the argument phy), or, in the case of dist.nodes, the numbers of the tips and
the nodes (as given by the element edge).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.tree to read tree files in Newick format, cophenetic for the generic function

cophyloplot 57

cophyloplot Plots two phylogenetic trees face to face with the links between the
tips.

Description

This function plots two trees face to face with the links if specified. It is possible to rotate the
branches of each tree around the nodes by clicking.

Usage

cophyloplot(x, y, assoc=NULL, use.edge.length=FALSE,space=0,
length.line=1, gap=2, type="phylogram", rotate=FALSE,
col="red", show.tip.label=TRUE, font=3, ...)

Arguments

x, y two objects of class "phylo".

assoc a matrix with 2 columns specifying the associations between the tips. If NULL,
no links will be drawn.

use.edge.length
a logical indicating whether the branch lengths should be used to plot the trees;
default is FALSE.

space a positive value that specifies the distance between the two trees.

length.line a positive value that specifies the length of the horizontal line associated to each
taxa. Default is 1.

gap a value specifying the distance between the tips of the phylogeny and the lines.

type a character string specifying the type of phylogeny to be drawn; it must be one
of "phylogram" (the default) or "cladogram".

rotate a logical indicating whether the nodes of the phylogeny can be rotated by click-
ing. Default is FALSE.

col a character string indicating the color to be used for the links. Default is red.

show.tip.label
a logical indicating whether to show the tip labels on the phylogeny (defaults to
’TRUE’, i.e. the labels are shown).

font an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3
(italic, the default), or 4 (bold italic).

... (unused)

58 cophyloplot

Details

The aim of this function is to plot simultaneously two phylogenetic trees with associated taxa. The
two trees do not necessarily have the same number of tips and more than one tip in one phylogeny
can be associated with a tip in the other.

The association matrix used to draw the links has to be a matrix with two columns containing the
names of the tips. One line in the matrix represents one link on the plot. The first column of the
matrix has to contain tip labels of the first tree (phy1) and the second column of the matrix, tip
labels of the second tree (phy2). There is no limit (low or high) for the number of lines in the
matrix. A matrix with two colums and one line will give a plot with one link.

Arguments gap, length.line and space have to be changed to get a nice plot of the two phy-
logenies. Note that the function takes into account the length of the character strings corresponding
to the names at the tips, so that the lines do not overwrite those names.

The rotate argument can be used to transform both phylogenies in order to get the more readable
plot (typically by decreasing the number of crossing lines). This can be done by clicking on the
nodes. The escape button or right click take back to the console.

Author(s)

Damien de Vienne 〈damien.de-vienne@u-psud.fr〉

See Also

plot.phylo, rotate

Examples

#two random trees
tree1<-rtree(40) #random tree with 40 leaves
tree2<-rtree(20) #random tree with 20 leaves

#creation of the association matrix
association<-matrix(ncol=2, nrow=40)
association[,1]<-association[,2]<-tree2$tip.label

#plot
cophyloplot(tree1, tree2, assoc=association, length.line=4, space=28, gap=3)

#plot with rotations
Not run:
cophyloplot(tree1, tree2, assoc=association, length.line=4, space=28, gap=3, rotate=TRUE)
End(Not run)

corBlomberg 59

corBlomberg Blomberg et al.’s Correlation Structure

Description

The “ACDC” (accelerated/decelerated) model assumes that continuous traits evolve under a Brow-
nian motion model which rates accelerates (if g < 1) or decelerates (if g > 1) through time. If g = 1,
then the model reduces to a Brownian motion model.

Usage

corBlomberg(value, phy, form = ~1, fixed = FALSE)
S3 method for class 'corBlomberg':
corMatrix(object, covariate = getCovariate(object),

corr = TRUE, ...)
S3 method for class 'corBlomberg':
coef(object, unconstrained = TRUE, ...)

Arguments

value the (initial) value of the parameter g.

phy an object of class "phylo".

form (ignored).

fixed a logical specifying whether gls should estimate γ (the default) or keep it fixed.

object an (initialized) object of class "corBlomberg".

covariate (ignored).

corr a logical value specifying whether to return the correlation matrix (the default)
or the variance-covariance matrix.

unconstrained
a logical value. If TRUE (the default), the coefficients are returned in uncon-
strained form (the same used in the optimization algorithm). If FALSE the co-
efficients are returned in “natural”, possibly constrained, form.

... further arguments passed to or from other methods.

Value

an object of class "corBlomberg", the coefficients from an object of this class, or the correlation
matrix of an initialized object of this class. In most situations, only corBlomberg will be called
by the user.

Author(s)

Emmanuel Paradis

60 corBrownian

References

Blomberg, S. P., Garland, Jr, T., and Ives, A. R. (2003) Testing for phylogenetic signal in compara-
tive data: behavioral traits are more labile. Evolution, 57, 717–745.

corBrownian Brownian Correlation Structure

Description

Expected covariance under a Brownian model (Felsenstein 1985, Martins and Hansen 1997):

Vij = γ × ta

where ta is the distance on the phylogeny between the root and the most recent common ancestor
of taxa i and j and γ is a constant.

Usage

corBrownian(value=1, phy, form=~1)
S3 method for class 'corBrownian':
coef(object, unconstrained = TRUE, ...)
S3 method for class 'corBrownian':
corMatrix(object,

covariate = getCovariate(object), corr = TRUE, ...)

Arguments

value The γ parameter (default to 1)

phy An object of class phylo representing the phylogeny (with branch lengths) to
consider

object An (initialized) object of class corBrownian

corr a logical value. If ’TRUE’ the function returns the correlation matrix, otherwise
it returns the variance/covariance matrix.

form ignored for now.

covariate ignored for now.
unconstrained

a logical value. If ’TRUE’ the coefficients are returned in unconstrained form
(the same used in the optimization algorithm). If ’FALSE’ the coefficients are
returned in "natural", possibly constrained, form. Defaults to ’TRUE’

... some methods for these generics require additional arguments. None are used
in these methods.

Value

An object of class corBrownian or coefficient from an object of this class (actually sends numeric(0)!)
or the correlation matrix of an initialized object of this class.

corClasses 61

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist, 125, 1–15.

Martins, E. P. and Hansen, T. F. (1997) Phylogenies and the comparative method: a general ap-
proach to incorporating phylogenetic information into the analysis of interspecific data. American
Naturalist, 149, 646–667.

See Also

corClasses.

corClasses Phylogenetic Correlation Structures

Description

Classes of phylogenetic correlation structures ("corPhyl") available in ape.

corBrownian Brownian motion model (Felsenstein 1985)

corMartins The covariance matrix defined in Martins and Hansen (1997)

corGrafen The covariance matrix defined in Grafen (1989)

corPagel The covariance matrix defined in Freckelton et al. (2002)

corBlomberg The covariance matrix defined in Blomberg et al. (2003)

See the help page of each class for references and detailed description.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉, Emmanuel Paradis

See Also

corClasses and gls in the nlme librarie, corBrownian, corMartins, corGrafen, corPagel,
corBlomberg

62 corGrafen

Examples

library(nlme)
cat("((((Homo:0.21,Pongo:0.21):0.28,",
"Macaca:0.49):0.13,Ateles:0.62):0.38,Galago:1.00);",
file = "ex.tre", sep = "\n")
tree.primates <- read.tree("ex.tre")
X <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
Y <- c(4.74493, 3.33220, 3.36730, 2.89037, 2.30259)
unlink("ex.tre") # delete the file "ex.tre"
m1 <- gls(Y~X, correlation=corBrownian(1, tree.primates))
summary(m1)
m2 <- gls(Y~X, correlation=corMartins(1, tree.primates))
summary(m2)
corMatrix(m2$modelStruct$corStruct)
m3 <- gls(Y~X, correlation=corGrafen(1, tree.primates))
summary(m3)
corMatrix(m3$modelStruct$corStruct)

corGrafen Grafen’s (1989) Correlation Structure

Description

Grafen’s (1989) covariance structure. Branch lengths are computed using Grafen’s method (see
compute.brlen). The covariance matrice is then the traditional variance-covariance matrix for
a phylogeny.

Usage

corGrafen(value, phy, form=~1, fixed = FALSE)
S3 method for class 'corGrafen':
coef(object, unconstrained = TRUE, ...)
S3 method for class 'corGrafen':
corMatrix(object,

covariate = getCovariate(object), corr = TRUE, ...)

Arguments

value The α parameter

phy An object of class phylo representing the phylogeny (branch lengths are ig-
nored) to consider

object An (initialized) object of class corGrafen

corr a logical value. If ’TRUE’ the function returns the correlation matrix, otherwise
it returns the variance/covariance matrix.

fixed an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, or kept fixed at their initial value. Defaults to ’FALSE’,
in which case the coefficients are allowed to vary.

corMartins 63

form ignored for now.

covariate ignored for now.
unconstrained

a logical value. If ’TRUE’ the coefficients are returned in unconstrained form
(the same used in the optimization algorithm). If ’FALSE’ the coefficients are
returned in "natural", possibly constrained, form. Defaults to ’TRUE’

... some methods for these generics require additional arguments. None are used
in these methods.

Value

An object of class corGrafen or the rho coefficient from an object of this class or the correlation
matrix of an initialized object of this class.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Grafen, A. (1989) The phylogenetic regression. Philosophical Transactions of the Royal society of
London. Series B. Biological Sciences, 326, 119–157.

See Also

corClasses, compute.brlen, vcv.phylo.

corMartins Martins’s (1997) Correlation Structure

Description

Martins and Hansen’s (1997) covariance structure:

Vij = γ × e−αtij

where tij is the phylogenetic distance between taxa i and j and γ is a constant.

Usage

corMartins(value, phy, form=~1, fixed = FALSE)
S3 method for class 'corMartins':
coef(object, unconstrained = TRUE, ...)
S3 method for class 'corMartins':
corMatrix(object,

covariate = getCovariate(object), corr = TRUE, ...)

64 corMartins

Arguments

value The α parameter

phy An object of class phylo representing the phylogeny (with branch lengths) to
consider

object An (initialized) object of class corMartins

corr a logical value. If ’TRUE’ the function returns the correlation matrix, otherwise
it returns the variance/covariance matrix.

fixed an optional logical value indicating whether the coefficients should be allowed to
vary in the optimization, ok kept fixed at their initial value. Defaults to ’FALSE’,
in which case the coefficients are allowed to vary.

form ignored for now.

covariate ignored for now.

unconstrained
a logical value. If ’TRUE’ the coefficients are returned in unconstrained form
(the same used in the optimization algorithm). If ’FALSE’ the coefficients are
returned in "natural", possibly constrained, form. Defaults to ’TRUE’

... some methods for these generics require additional arguments. None are used
in these methods.

Value

An object of class corMartins or the alpha coefficient from an object of this class or the corre-
lation matrix of an initialized object of this class.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Martins, E. P. and Hansen, T. F. (1997) Phylogenies and the comparative method: a general ap-
proach to incorporating phylogenetic information into the analysis of interspecific data. American
Naturalist, 149, 646–667.

See Also

corClasses.

corPagel 65

corPagel Pagel’s “lambda” Correlation Structure

Description

The correlation structure from the present model is derived from the Brownian motion model by
multiplying the off-diagonal elements (i.e., the covariances) by γ. The variances are thus the same
than for a Brownian motion model.

Usage

corPagel(value, phy, form = ~1, fixed = FALSE)
S3 method for class 'corPagel':
corMatrix(object, covariate = getCovariate(object),

corr = TRUE, ...)
S3 method for class 'corPagel':
coef(object, unconstrained = TRUE, ...)

Arguments

value the (initial) value of the parameter γ.

phy an object of class "phylo".

form (ignored).

fixed a logical specifying whether gls should estimate γ (the default) or keep it fixed.

object an (initialized) object of class "corPagel".

covariate (ignored).

corr a logical value specifying whether to return the correlation matrix (the default)
or the variance-covariance matrix.

unconstrained
a logical value. If TRUE (the default), the coefficients are returned in uncon-
strained form (the same used in the optimization algorithm). If FALSE the co-
efficients are returned in “natural”, possibly constrained, form.

... further arguments passed to or from other methods.

Value

an object of class "corPagel", the coefficients from an object of this class, or the correlation
matrix of an initialized object of this class. In most situations, only corPagel() will be called
by the user.

Author(s)

Emmanuel Paradis

66 correlogram.formula

References

Freckleton, R. P., Harvey, P. H. and M. Pagel, M. (2002) Phylogenetic analysis and comparative
data: a test and review of evidence. American Naturalist, 160, 712–726.

Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401,877–884.

correlogram.formula
Phylogenetic Correlogram

Description

This function computes a correlogram from taxonomic levels.

Usage

correlogram.formula(formula, data = NULL, use = "all.obs")

Arguments

formula a formula of the type y1+..+yn ~ g1/../gn, where the y’s are the data to
analyse and the g’s are the taxonomic levels.

data a data frame containing the variables specified in the formula. If NULL, the
variables are sought in the user’s workspace.

use a character string specifying how to handle missing values (i.e., NA). This must
be one of "all.obs", "complete.obs", or "pairwise.complete.obs", or any unam-
biguous abbrevation of these. In the first case, the presence of missing values
produces an error. In the second case, all rows with missing values will be re-
moved before computation. In the last case, missing values are removed on a
case-by-case basis.

Details

See the vignette in R: vignette("MoranI").

Value

An object of class correlogram which is a data frame with three columns:

obs the computed Moran’s I

p.values the corresponding P-values

labels the names of each level

or an object of class correlogramList containing a list of objects of class correlogram if
several variables are given as response in formula.

data.nex 67

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉 and Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

plot.correlogram, plot.correlogram

Examples

data(carnivora)
Using the formula interface:
co <- correlogram.formula(SW ~ Order/SuperFamily/Family/Genus,

data=carnivora)
co
plot(co)
Several correlograms on the same plot:
cos <- correlogram.formula(SW + FW ~ Order/SuperFamily/Family/Genus,

data=carnivora)
cos
plot(cos)

data.nex NEXUS Data Example

Description

Example of Protein data in NEXUS format (Maddison et al., 1997). Data is written in interleaved
format using a single DATA block. Original data from Rokas et al (2002).

Usage

data(cynipids)

Format

ASCII text in NEXUS format

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997) NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590–621.

Rokas, A., Nylander, J. A. A., Ronquist, F. and Stone, G. N. (2002) A maximum likelihood analysis
of eight phylogenetic markers in Gallwasps (Hymenoptera: Cynipidae): implications for insect
phylogenetic studies. Molecular Phylogenetics and Evolution, 22, 206–219.

68 dist.dna

dist.dna Pairwise Distances from DNA Sequences

Description

This function computes a matrix of pairwise distances from DNA sequences using a model of DNA
evolution. Eleven substitution models (and the raw distance) are currently available.

Usage

dist.dna(x, model = "K80", variance = FALSE,
gamma = FALSE, pairwise.deletion = FALSE,
base.freq = NULL, as.matrix = FALSE)

Arguments

x a matrix or a list containing the DNA sequences.

model a character string specifying the evlutionary model to be used; must be one of
"raw", "JC69", "K80" (the default), "F81", "K81", "F84", "BH87",
"T92", "TN93", "GG95", "logdet", or "paralin".

variance a logical indicating whether to compute the variances of the distances; defaults
to FALSE so the variances are not computed.

gamma a value for the gamma parameter which is possibly used to apply a gamma cor-
rection to the distances (by default gamma = FALSE so no correction is ap-
plied).

pairwise.deletion
a logical indicating whether to delete the sites with missing data in a pairwise
way. The default is to delete the sites with at least one missing data for all
sequences.

base.freq the base frequencies to be used in the computations (if applicable, i.e. if method
= "F84"). By default, the base frequencies are computed from the whole sam-
ple of sequences.

as.matrix a logical indicating whether to return the results as a matrix. The default is to
return an object of class dist.

Details

The molecular evolutionary models available through the option model have been extensively
described in the literature. A brief description is given below; more details can be found in the
References.

“raw” This is simply the proportion of sites that differ between each pair of sequences. This may
be useful to draw “saturation plots”. The options variance and gamma have no effect, but
pairwise.deletion can.

dist.dna 69

“JC69” This model was developed by Jukes and Cantor (1969). It assumes that all substitutions (i.e. a
change of a base by another one) have the same probability. This probability is the same for all
sites along the DNA sequence. This last assumption can be relaxed by assuming that the substition
rate varies among site following a gamma distribution which parameter must be given by the user.
By default, no gamma correction is applied. Another assumption is that the base frequencies are
balanced and thus equal to 0.25.

“K80” The distance derived by Kimura (1980), sometimes referred to as “Kimura’s 2-parameters dis-
tance”, has the same underlying assumptions than the Jukes–Cantor distance except that two kinds
of substitutions are considered: transitions (A <-> G, C <-> T), and transversions (A <-> C, A <->
T, C <-> G, G <-> T). They are assumed to have different probabilities. A transition is the sub-
stitution of a purine (C, T) by another one, or the substitution of a pyrimidine (A, G) by another
one. A transversion is the substitution of a purine by a pyrimidine, or vice-versa. Both transition
and transversion rates are the same for all sites along the DNA sequence. Jin and Nei (1990) modi-
fied the Kimura model to allow for variation among sites following a gamma distribution. Like for
the Jukes–Cantor model, the gamma parameter must be given by the user. By default, no gamma
correction is applied.

“F81” Felsenstein (1981) generalized the Jukes–Cantor model by relaxing the assumption of equal base
frequencies. The formulae used in this function were taken from McGuire et al. (1999).

“K81” Kimura (1981) generalized his model (Kimura 1980) by assuming different rates for two kinds
of transversions: A <-> C and G <-> T on one side, and A <-> T and C <-> G on the other. This
is what Kimura called his “three substitution types model” (3ST), and is sometimes referred to as
“Kimura’s 3-parameters distance”.

“F84” This model generalizes K80 by relaxing the assumption of equal base frequencies. It was first
introduced by Felsenstein in 1984 in Phylip, and is fully described by Felsenstein and Churchill
(1996). The formulae used in this function were taken from McGuire et al. (1999).

“BH87” Barry and Hartigan (1987) developed a distance based on the observed proportions of changes
among the four bases. This distance is not symmetric.

“T92” Tamura (1992) generalized the Kimura model by relaxing the assumption of equal base frequen-
cies. This is done by taking into account the bias in G+C content in the sequences. The substitution
rates are assumed to be the same for all sites along the DNA sequence.

“TN93” Tamura and Nei (1993) developed a model which assumes distinct rates for both kinds of transi-
tion (A <-> G versus C <-> T), and transversions. The base frequencies are not assumed to be equal
and are estimated from the data. A gamma correction of the inter-site variation in substitution rates
is possible.

“GG95” Galtier and Gouy (1995) introduced a model where the G+C content may change through time.
Different rates are assumed for transitons and transversions.

“logdet” The Log-Det distance, developed by Lockhart et al. (1994), is related to BH87. However, this
distance is symmetric.

“paralin” Lake (1994) developed the paralinear distance which can be viewed as another variant of the
Barry–Hartigan distance.

70 dist.dna

Value

an object of class dist (by default), or a numeric matrix if as.matrix = TRUE. If model =
"BH87", a numeric matrix is returned because the Barry–Hartigan distance is not symmetric.

If variance = TRUE an attribute called "variance" is given to the returned object.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Barry, D. and Hartigan, J. A. (1987) Asynchronous distance between homologous DNA sequences.
Biometrics, 43, 261–276.

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17, 368–376.

Felsenstein, J. and Churchill, G. A. (1996) A Hidden Markov model approach to variation among
sites in rate of evolution. Molecular Biology and Evolution, 13, 93–104.

Galtier, N. and Gouy, M. (1995) Inferring phylogenies from DNA sequences of unequal base com-
positions. Proceedings of the National Academy of Sciences USA, 92, 11317–11321.

Jukes, T. H. and Cantor, C. R. (1969) Evolution of protein molecules. in Mammalian Protein
Metabolism, ed. Munro, H. N., pp. 21–132, New York: Academic Press.

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

Kimura, M. (1981) Estimation of evolutionary distances between homologous nucleotide sequences.
Proceedings of the National Academy of Sciences USA, 78, 454–458.

Jin, L. and Nei, M. (1990) Limitations of the evolutionary parsimony method of phylogenetic anal-
ysis. Molecular Biology and Evolution, 7, 82–102.

Lake, J. A. (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear
distances. Proceedings of the National Academy of Sciences USA, 91, 1455–1459.

Lockhart, P. J., Steel, M. A., Hendy, M. D. and Penny, D. (1994) Recovering evolutionary trees
under a more realistic model of sequence evolution. Molecular Biology and Evolution, 11, 605–
602.

McGuire, G., Prentice, M. J. and Wright, F. (1999). Improved error bounds for genetic distances
from DNA sequences. Biometrics, 55, 1064–1070.

Tamura, K. (1992) Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9, 678–687.

Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control
region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10,
512–526.

See Also

read.GenBank, read.dna, write.dna, DNAbin, dist.gene, cophenetic.phylo,
dist

dist.gene 71

dist.gene Pairwise Distances from Genetic Data

Description

These functions compute a matrix of distances between pairs of individuals from a matrix or a data
frame of genetic data.

Usage

dist.gene(x, method = "pairwise", variance = FALSE)
dist.gene.pairwise(x, variance = FALSE)
dist.gene.percentage(x, variance = FALSE)

Arguments

x a matrix or a data frame.

method a character string specifying the method used to compute the distances; only two
choices are available: "pairwise", and "percentage".

variance a logical, indicates whether the variance of the distances should be returned
(default to FALSE).

Details

This function is meant to be very general and accepts different kinds of data (alleles, haplotypes,
DNA sequences, and so on). The rows of the data matrix represent the individuals, and the columns
the loci.

In the case of the pairwise method, the distance d between two individuals is the number of loci for
which they differ, and the associated variance is d(L− d)/L, where L is the number of loci.

In the case of the percentage method, this distance is divided by L, and the associated variance is
d(1− d)/L.

For more elaborate distances with DNA sequences, see the function dist.dna.

Value

either a numeric matrix with possibly the names of the individuals (as given by the rownames of the
argument x) as colnames and rownames (if variance = FALSE, the default), or a list of two
matrices names distances and variance, respectively (if variance = TRUE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

dist.dna, cophenetic.phylo

72 dist.topo

dist.topo Topological Distances Between Two Trees

Description

This function computes the topological distance between two phylogenetic trees using different
methods.

Usage

dist.topo(x, y, method = "PH85")

Arguments

x an object of class "phylo".

y an object of class "phylo".

method a character string giving the method to be used: either "PH85", or "BHV01".

Details

Two methods are available: the one by Penny and Hendy (1985), and the one by Billera et al.
(2001).

The topological distance is defined as twice the number of internal branches defining different
bipartitions of the tips (Penny and Hendy 1985). Rzhetsky and Nei (1992) proposed a modification
of the original formula to take multifurcations into account.

Billera et al. (2001) developed a distance from the geometry of a tree space. The distance between
two trees can be seen as the sum of the branch lengths that need be erased to have two similar trees.

Value

a single numeric value.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Billera, L. J., Holmes, S. P. and Vogtmann, K. (2001) Geometry of the space of phylogenetic trees.
Advances in Applied Mathematics, 27, 733–767.

Nei, M. and Kumar, S. (2000) Molecular evolution and phylogenetics. Oxford: Oxford University
Press.

Penny, D. and Hendy, M. D. (1985) The use of tree comparison metrics. Systemetic Zoology, 34,
75–82.

Rzhetsky, A. and Nei, M. (1992) A simple method for estimating and testing minimum-evolution
trees. Molecular Biology and Evolution, 9, 945–967.

diversi.gof 73

See Also

read.tree to read tree files in Newick format, cophenetic.phylo, prop.part

Examples

ta <- rtree(30)
tb <- rtree(30)
dist.topo(ta, ta) # = 0
dist.topo(ta, tb) # This is unlikely to be 0 !

diversi.gof Tests of Constant Diversification Rates

Description

This function computes two tests of the distribution of branching times using the Cramér–von Mises
and Anderson–Darling goodness-of-fit tests. By default, it is assumed that the diversification rate
is constant, and an exponential distribution is assumed for the branching times. In this case, the
expected distribution under this model is computed with a rate estimated from the data. Alterna-
tively, the user may specify an expected cumulative density function (z): in this case, x and z must
be of the same length. See the examples for how to compute the latter from a sample of expected
branching times.

Usage

diversi.gof(x, null = "exponential", z = NULL)

Arguments

x a numeric vector with the branching times.

null a character string specifying the null distribution for the branching times. Only
two choices are possible: either "exponential", or "user".

z used if null = "user"; gives the expected distribution under the model.

Details

The Cramér–von Mises and Anderson–Darling tests compare the empirical density function (EDF)
of the observations to an expected cumulative density function. By contrast to the Kolmogorov–
Smirnov test where the greatest difference between these two functions is used, in both tests all
differences are taken into account.

The distributions of both test statistics depend on the null hypothesis, and on whether or not some
parameters were estimated from the data. However, these distributions are not known precisely and
critical values were determined by Stephens (1974) using simulations. These critical values were
used for the present function.

74 diversi.time

Value

A NULL value is returned, the results are simply printed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. (1998) Testing for constant diversification rates using molecular phylogenies: a general
approach based on statistical tests for goodness of fit. Molecular Biology and Evolution, 15, 476–
479.

Stephens, M. A. (1974) EDF statistics for goodness of fit and some comparisons. Journal of the
American Statistical Association, 69, 730–737.

See Also

branching.times, diversi.time ltt.plot, birthdeath, yule, yule.cov

Examples

data(bird.families)
x <- branching.times(bird.families)
suppose we have a sample of expected branching times `y';
for simplicity, take them from a uniform distribution:
y <- runif(500, 0, max(x) + 1) # + 1 to avoid A2 = Inf
now compute the expected cumulative distribution:
x <- sort(x)
N <- length(x)
ecdf <- numeric(N)
for (i in 1:N) ecdf[i] <- sum(y <= x[i])/500
finally do the test:
diversi.gof(x, "user", z = ecdf)

diversi.time Analysis of Diversification with Survival Models

Description

This functions fits survival models to a set of branching times, some of them may be known approx-
imately (censored). Three models are fitted, Model A assuming constant diversification, Model B
assuming that diversification follows a Weibull law, and Model C assuming that diversification
changes with a breakpoint at time ‘Tc’. The models are fitted by maximum likelihood.

Usage

diversi.time(x, census = NULL, censoring.codes = c(1, 0), Tc = NULL)

diversi.time 75

Arguments

x a numeric vector with the branching times.

census a vector of the same length than ‘x’ used as an indicator variable; thus, it must
have only two values, one coding for accurately known branching times, and
the other for censored branching times. This argument can be of any mode
(numeric, character, logical), or can even be a factor.

censoring.codes
a vector of length two giving the codes used for census: by default 1 (accu-
rately known times) and 0 (censored times). The mode must be the same than
the one of census.

Tc a single numeric value specifying the break-point time to fit Model C. If none is
provided, then it is set arbitrarily to the mean of the analysed branching times.

Details

The principle of the method is to consider each branching time as an event: if the branching time is
accurately known, then it is a failure event; if it is approximately knwon then it is a censoring event.
An analogy is thus made between the failure (or hazard) rate estimated by the survival models and
the diversification rate of the lineage. Time is here considered from present to past.

Model B assumes a monotonically changing diversification rate. The parameter that controls the
change of this rate is called beta. If beta is greater than one, then the diversification rate decreases
through time; if it is lesser than one, the the rate increases through time. If beta is equal to one, then
Model B reduces to Model A.

Value

A NULL value is returned, the results are simply printed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. (1997) Assessing temporal variations in diversification rates from phylogenies: esti-
mation and hypothesis testing. Proceedings of the Royal Society of London. Series B. Biological
Sciences, 264, 1141–1147.

See Also

branching.times, diversi.gof ltt.plot, birthdeath, bd.ext, yule, yule.cov

76 drop.tip

drop.tip Remove Tips in a Phylogenetic Tree

Description

This function removes the terminal branches of a phylogenetic tree, possibly removing the corre-
sponding internal branches.

Usage

drop.tip(phy, tip, trim.internal = TRUE, subtree = FALSE,
root.edge = 0)

Arguments

phy an object of class "phylo".

tip a vector of mode numeric or character specifying the tips to delete.
trim.internal

a logical specifying whether to delete the corresponding internal branches.

subtree a logical specifying whether to output in the tree how many tips have been
deleted and where.

root.edge an integer giving the number of internal branches to be used to build the new
root edge. This has no effect if trim.internal = FALSE.

Details

The argument tip can be either character or numeric. In the first case, it gives the labels of the tips
to be deleted; in the second case the numbers of these labels in the vector phy$tip.label are
given.

If trim.internal = FALSE, the new tips are given "NA" as labels, unless there are node
labels in the tree in which case they are used.

If subtree = TRUE, the returned tree has one or several terminal branches indicating how many
tips have been removed (with a label "[x_tips]"). This is done for as many monophyletic
groups that have been deleted.

Note that subtree = TRUE implies trim.internal = TRUE.

To undestand how the option root.edge works, see the examples below.

Value

an object of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

evolve.phylo 77

See Also

bind.tree, root

Examples

data(bird.families)
tip <- c(
"Eopsaltriidae", "Acanthisittidae", "Pittidae", "Eurylaimidae",
"Philepittidae", "Tyrannidae", "Thamnophilidae", "Furnariidae",
"Formicariidae", "Conopophagidae", "Rhinocryptidae", "Climacteridae",
"Menuridae", "Ptilonorhynchidae", "Maluridae", "Meliphagidae",
"Pardalotidae", "Petroicidae", "Irenidae", "Orthonychidae",
"Pomatostomidae", "Laniidae", "Vireonidae", "Corvidae",
"Callaeatidae", "Picathartidae", "Bombycillidae", "Cinclidae",
"Muscicapidae", "Sturnidae", "Sittidae", "Certhiidae",
"Paridae", "Aegithalidae", "Hirundinidae", "Regulidae",
"Pycnonotidae", "Hypocoliidae", "Cisticolidae", "Zosteropidae",
"Sylviidae", "Alaudidae", "Nectariniidae", "Melanocharitidae",
"Paramythiidae","Passeridae", "Fringillidae")
plot(drop.tip(bird.families, tip))
plot(drop.tip(bird.families, tip, trim.internal = FALSE))
data(bird.orders)
plot(drop.tip(bird.orders, 6:23, subtree = TRUE), font = 1)
plot(drop.tip(bird.orders, c(1:5, 20:23), subtree = TRUE), font = 1)

Examples of the use of `root.edge'
tr <- read.tree(text = "(A:1,(B:1,(C:1,(D:1,E:1):1):1):1):1;")
drop.tip(tr, c("A", "B"), root.edge = 0) # = (C:1,(D:1,E:1):1);
drop.tip(tr, c("A", "B"), root.edge = 1) # = (C:1,(D:1,E:1):1):1;
drop.tip(tr, c("A", "B"), root.edge = 2) # = (C:1,(D:1,E:1):1):2;
drop.tip(tr, c("A", "B"), root.edge = 3) # = (C:1,(D:1,E:1):1):3;

evolve.phylo Ancestral Character Simulation

Description

Simulate the (independent) evolution of one or several continuous characters along a given phylo-
genetic tree under a homogeneous Brownian model.

Usage

evolve.phylo(phy, value, var)

Arguments

phy an object of class ’phylo’ with branch lengths.
value ancestral states, one by character. The (optional) names of this vector will be

used as character names.
var the variance of each character.

78 FastME

Details

Let x be a continuous character. If it evolves according to a Brownian model, its value at time t
follows a normal law with mean x0 and variance t*sigma_x, where x0 is the value of the character
at time 0, and sigma_x is the ’inner’ variance of the character. The evolution of a continuous
character is performed by letting the character evolve on each branch, from its ancestral root state.
The final state of a branch is the ancestral states of the daughter branches, and so on.

Value

An object of class ’ancestral’, inheriting from the ’phylo’ class. The following components are
added:

node.character
a data.frame with node ids as rownames and one column by character, containing
all the inner node values for each character.

tip.character
a data.frame with tip ids as rownames and one column by character, containing
all the tip values for each character.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

See Also

plot.ancestral, ace

Examples

data(bird.orders)
x <- rep(0, 5)
names(x) <- c("A", "B", "C", "D", "E")
anc1 <- evolve.phylo(bird.orders, x, 1)
anc2 <- evolve.phylo(bird.orders, x, 1)
cor(anc1$tip.character, anc2$tip.character)

FastME Tree Estimation Based on the Minimum Evolution Algorithm

Description

The two FastME functions (balanced and OLS) perform the Minimum Evolution algorithm of Des-
per and Gascuel (2002).

Usage

fastme.bal(X, nni = TRUE)
fastme.ols(X, nni = TRUE)

gammaStat 79

Arguments

X a distance matrix; may be an object of class "dist".

nni a boolean value; TRUE to do NNIs (default).

Value

an object of class "phylo".

Author(s)

original C code by Richard Desper; adapted and ported to R by Vincent Lefort 〈vincent.lefort@lirmm.fr〉

References

Desper, R. and Gascuel, O. (2002) Fast and accurate phylogeny reconstruction algorithms based on
the minimum-evolution principle. Journal of Computational Biology, 9(5), 687–705.

See Also

nj, bionj, write.tree, read.tree, dist.dna, mlphylo

Examples

From Saitou and Nei (1987, Table 1):
x <- c(7, 8, 11, 13, 16, 13, 17, 5, 8, 10, 13,

10, 14, 5, 7, 10, 7, 11, 8, 11, 8, 12,
5, 6, 10, 9, 13, 8)

M <- matrix(0, 8, 8)
M[row(M) > col(M)] <- x
M[row(M) < col(M)] <- x
rownames(M) <- colnames(M) <- 1:8
tr <- fastme.bal(M)
plot(tr, "u")
a less theoretical example
data(woodmouse)
trw <- fastme.bal(dist.dna(woodmouse))
plot(trw)

gammaStat Gamma-Statistic of Pybus and Harvey

Description

This function computes the gamma-statistic which summarizes the information contained in the
inter-node intervals of a phylogeny. It is assumed that the tree is ultrametric. Note that the function
does not check that the tree is effectively ultrametric, so if it is not, the returned result may not be
meaningful.

80 heterozygosity

Usage

gammaStat(phy)

Arguments

phy an object of class "phylo".

Details

The gamma-statistic is a summary of the information contained in the inter-node intervals of a
phylogeny; it follows, under the assumption that the clade diversified with constant rates, a nor-
mal distribution with mean zero and standard-deviation unity (Pybus and Harvey 2000). Thus,
the null hypothesis that the clade diversified with constant rates may be tested with 2*(1 -
pnorm(abs(gammaStat(phy)))) for a two-tailed test, or 1 - pnorm(abs(gammaStat(phy)))
for a one-tailed test, both returning the corresponding P-value.

Value

a numeric vector of length one.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Pybus, O. G. and Harvey, P. H. (2000) Testing macro-evolutionary models using incomplete molec-
ular phylogenies. Proceedings of the Royal Society of London. Series B. Biological Sciences, 267,
2267–2272.

See Also

branching.times, ltt.plot, skyline

heterozygosity Heterozygosity at a Locus Using Gene Frequencies

Description

This function computes the mean heterozygosity from gene frequencies, and returns optionally the
associated variance.

Usage

heterozygosity(x, variance = FALSE)
H(x, variance = FALSE)

hivtree 81

Arguments

x a vector or a factor.

variance a logical indicating whether the variance of the estimated heterozygosity should
be returned (TRUE), the default being FALSE.

Details

The argument x can be either a factor or a vector. If it is a factor, then it is taken to give the
individual alleles in the population. If it is a numeric vector, then its values are taken to be the
numbers of each allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

The mean heterozygosity is estimated with:

Ĥ =
n

n− 1

(
1−

k∑
i=1

p2
i

)

where n is the number of genes in the sample, k is the number of alleles, and pi is the observed
(relative) frequency of the allele i.

Value

a numeric vector of length one with the estimated mean heterozygosity (the default), or of length
two if the variance is returned variance = TRUE.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Nei, M. (1987) Molecular evolutionary genetics. New York: Columbia University Press.

See Also

theta.s

hivtree Phylogenetic Tree of 193 HIV-1 Sequences

Description

This data set describes an estimated clock-like phylogeny of 193 HIV-1 group M sequences sampled
in the Democratic Republic of Congo.

Usage

data(hivtree.newick)
data(hivtree.table)

82 howmanytrees

Format

hivtree.newick is a string with the tree in Newick format. The data frame hivtree.table
contains the corresponding internode distances.

Source

This is a data example from Strimmer and Pybus (2001).

References

Strimmer, K. and Pybus, O. G. (2001) Exploring the demographic history of DNA sequences using
the generalized skyline plot. Molecular Biology and Evolution, 18, 2298–2305.

Examples

example tree in NH format (a string)
data("hivtree.newick")
hivtree.newick

generate file "hivtree.phy" in working directory
cat(hivtree.newick, file = "hivtree.phy", sep = "\n")
tree.hiv <- read.tree("hivtree.phy") # load tree
unlink("hivtree.phy") # delete the file "hivtree.phy"

plot(tree.hiv)

table with list of internode distances
data("hivtree.table")
hivtree.table

construct coalescence intervals
ci <- coalescent.intervals(tree.hiv) # from tree
ci <- coalescent.intervals(hivtree.table$size) #from intervals
ci

howmanytrees Calculate Numbers of Phylogenetic Trees

Description

This function calculates the number of possible phylogenetic trees for a given number of tips.

Usage

howmanytrees(n, rooted = TRUE, binary = TRUE,
labeled = TRUE, detail = FALSE)

howmanytrees 83

Arguments

n a positive numeric integer giving the number of tips.

rooted a logical indicating whether the trees are rooted (default is TRUE).

binary a logical indicating whether the trees are bifurcating (default is TRUE).

labeled a logical indicating whether the trees have tips labeled (default is TRUE).

detail a logical indicating whether the eventual intermediate calculations should be
returned (default is FALSE). This applies only for the multifurcating trees, and
the bifurcating, rooted, unlabeled trees (aka tree shapes).

Details

In the cases of labeled binary trees, the calculation is done directly and a single numeric value is
returned.

For multifurcating trees, and bifurcating, rooted, unlabeled trees, the calculation is done iteratively
for 1 to n tips. Thus the user can print all the intermediate values if detail = TRUE, or only a
single value if detail = FALSE (the default).

For multifurcating trees, if detail = TRUE, a matrix is returned with the number of tips as
rows (named from 1 to n), and the number of nodes as columns (named from 1 to n - 1). For
bifurcating, rooted, unlabeled trees, a vector is returned with names equal to the number of tips
(from 1 to n).

The number of unlabeled trees (aka tree shapes) can be computed only for the rooted binary cases.

Note that if an infinite value (Inf) is returned this does not mean that there is an infinite number of
trees (this cannot be if the number of tips is finite), but that the calculation is beyond the limits of
the computer.

Value

a single numeric value, or in the case where detail = TRUE is used, a named vector or matrix.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Felsenstein, J. (2004) Inferring phylogenies. Sunderland: Sinauer Associates.

Examples

Table 3.1 in Felsenstein 2004:
for (i in c(1:20, 30, 40, 50))
cat(paste(i, howmanytrees(i), sep = "\t"), sep ="\n")

Table 3.6:
howmanytrees(8, binary = FALSE, detail = TRUE)

84 identify.phylo

identify.phylo Graphical Identification of Nodes and Tips

Description

This function allows to identify a clade on a plotted tree by clicking on the plot with the mouse.
The tree, specified in the argument x, must be plotted beforehand.

Usage

S3 method for class 'phylo':
identify(x, nodes = TRUE, tips = FALSE,

labels = FALSE, ...)

Arguments

x an object of class "phylo".

nodes a logical specifying whether to identify the node.

tips a logical specifying whether to return the tip information.

labels a logical specifying whether to return the labels; by default only the numbers
are returned.

... further arguments to be passed to or from other methods.

Details

By default, the clade is identified by its number as found in the ‘edge’ matrix of the tree. If tips =
TRUE, the tips descending from the identified node are returned, possibly together with the node. If
labels = TRUE, the labels are returned (if the tree has no node labels, then the node numbered
is returned).

The node is identified by the shortest distance where the click occurs. If the click occurs close to a
tip, the function returns its information.

Value

A list with one or two vectors named "tips" and/or "nodes" with the identification of the tips
and/or of the nodes.

Note

This function does not add anything on the plot, but it can be wrapped with, e.g., nodelabels
(see example), or its results can be sent to, e.g., drop.tip.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

is.binary.tree 85

See Also

plot.phylo, nodelabels, identify for the generic function

Examples

Not run:
tr <- rtree(20)
f <- function(col) {

o <- identify(tr)
nodelabels(node=o$nodes, pch = 19, col = col)

}
plot(tr)
f("red") # click close to a node
f("green")
End(Not run)

is.binary.tree Test for Binary Tree

Description

This function tests whether a phylogenetic tree is binary, i.e. whether every node (including the root
node) has exactly two descendant nodes. In this case the number of edges in the tree equals 2 n - 2
where n is the number of taxa (tips) in the tree.

Usage

is.binary.tree(phy)

Arguments

phy phylogenetic tree (i.e. an object of class "phylo").

Value

is.binary.tree returns TRUE if tree is a fully binary phylogenetic tree, otherwise it returns
FALSE.

Author(s)

Korbinian Strimmer (http://www.stat.uni-muenchen.de/~strimmer/)

See Also

read.tree, is.ultrametric, multi2di

http://www.stat.uni-muenchen.de/~strimmer/

86 is.ultrametric

Examples

data("hivtree.newick") # example tree in NH format
tree.hiv <- read.tree(text = hivtree.newick) # load tree

is.binary.tree(tree.hiv)

plot(tree.hiv)

unlink("hivtree.phy") # delete the file "hivtree.phy"

is.ultrametric Test if a Tree is Ultrametric

Description

This function computes the distances from each tip to the root: if the variance of these distances is
null, the tree is considered as ultrametric.

Usage

is.ultrametric(phy, tol = .Machine$double.eps^0.5)

Arguments

phy an object of class "phylo".

tol a numeric >= 0, variation below this value are considered non-significant (see
details).

Details

The default value for tol is based on the numerical characteristics of the machine R is running on.

Value

a logical: TRUE if the tree is ultrametric, FALSE otherwise.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

is.binary.tree, .Machine

klastorin 87

klastorin Klastorin’s (1982) method for classifying genes as suggested by Mis-
awa and Tajima (2000)

Description

The function klastorin uses the method by Klastorin’s (1982) as suggested by Misawa and
Tajima (2000) for identifying groups within gene trees.

Usage

klastorin(phy)

Arguments

phy a phylogenetic tree, i.e. an object of class "phy". The root of the tree should
make sense biologically.

Value

A vector indication the class affiliation for each sequence/taxon in the tree.

Author(s)

Gangolf Jobb (http://www.treefinder.de)

References

Klastorin T.D. (1982) An alternative method for hospital partition determination using hierarchical
cluster analysis. Operations Research 30,1134–1147.

Misawa, K. (2000) A simple method for classifying genes and a bootstrap test for classifications.
Molecular Biology and Evolution, 17, 1879–1884.

See Also

opsin.

Examples

find groups in landplant tree
data("landplants.newick")
tree1 <- read.tree(text = landplants.newick)
plot(tree1, label.offset = 0.001)
klastorin(tree1)
tree1$tip.label

find groups in opsin tree
data("opsin.newick")

http://www.treefinder.de

88 ladderize

tree2 <- read.tree(text = opsin.newick)
plot(tree2,label.offset = 0.01)
groups <- klastorin(tree2)
groups
tree2$tip.label[groups==1]
tree2$tip.label[groups==2]
tree2$tip.label[groups==3]
tree2$tip.label[groups==4]
tree2$tip.label[groups==5]

ladderize Ladderize a Tree

Description

This function reorganizes the internal structure of the tree to get the ladderized effect when plotted.

Usage

ladderize(phy, right = TRUE)

Arguments

phy an object of class "phylo".

right a logical specifying whether the smallest clade is on the right-hand side (when
the tree is plotted upwards), or the opposite (if FALSE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

plot.phylo, reorder.phylo

Examples

tr <- rcoal(50)
layout(matrix(1:4, 2, 2))
plot(tr, main = "normal")
plot(ladderize(tr), main = "right-ladderized")
plot(ladderize(tr, FALSE), main = "left-ladderized")
layout(matrix(1, 1))

landplants 89

landplants Gene Tree of 36 Landplant rbcL Sequences

Description

This data set describes a gene tree estimated from 36 landplant rbcL sequences.

Usage

data(landplants.newick)

Format

landplants.newick is a string with the tree in Newick format.

Source

This tree is described in Sanderson (1997) and is also a data example in the software package r8s
(http://ginger.ucdavis.edu/r8s/).

References

Sanderson, M. J. (1997) A nonparametric approach to estimating divergence times in the absence
of rate constancy. Molecular Biology and Evolution, 14, 1218–1231.

See Also

chronogram, ratogram, NPRS.criterion.

Examples

example tree in NH format (a string)
data("landplants.newick")
landplants.newick

get corresponding phylo object
tree.landplants <- read.tree(text = landplants.newick)

plot tree
plot(tree.landplants, label.offset = 0.001)

http://ginger.ucdavis.edu/r8s/

90 ltt.plot

ltt.plot Lineages Through Time Plot

Description

These functions plot, on the current graphical device, the minimum numbers of lineages through
time from phylogenetic trees.

Usage

ltt.plot(phy, xlab = "Time", ylab = "N", ...)
ltt.lines(phy, ...)
mltt.plot(phy, ..., dcol = TRUE, dlty = FALSE, legend = TRUE,

xlab = "Time", ylab = "N", log = "")

Arguments

phy an object of class "phylo"; this could be an object of class "multiPhylo"
in the case of mltt.plot.

xlab a character string (or a variable of mode character) giving the label for the x-axis
(default is "Time").

ylab idem for the y-axis (default is "N").

... in the cases of ltt.plot() and ltt.lines() these are further (graphical)
arguments to be passed to plot() or lines(), respectively (see Details:
on how to transform the axes); in the case mltt.plot() these are additional
trees to be plotted (see Details:).

dcol a logical specifying whether the different curves should be differentiated with
colors (default is TRUE).

dlty a logical specifying whether the different curves should be differentiated with
patterns of dots and dashes (default is FALSE).

legend a logical specifying whether a legend should be plotted.

log a character string specifying which axis(es) to be log-transformed; must be one
of the followings: "", "x", "y", or "xy".

Details

ltt.plot does a simple lineages through time (LTT) plot. Additional arguments (...) may
be used to change, for instance, the limits on the axes (with xlim and/or ylim) or other graphical
settings (col for the color, lwd for the line thickness, lty for the line type may be useful; see par
for an exhaustive listing of graphical parameters). The y-axis can be log-transformed by adding the
following option: log = "y".

ltt.lines adds a LTT curve to an existing plot. Additional arguments (...) may be used to
change the settings of the added line. Of course, the settings of the already existing LTT plot cannot
be altered this way.

ltt.plot 91

mltt.plot does a multiple LTT plot taking as arguments one or several trees. These trees may be
given as objects of class "phylo" (single trees) or "multiPhylo" (multiple trees). Any number
of objects may be given. This function is mainly for exploratory analyses with the advantages that
the axes are set properly to view all lines, and the legend is plotted by default. For more flexible
settings of line drawings, it is probably better to combine ltt.plot() with successive calls of
ltt.lines() (see Examples:).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Harvey, P. H., May, R. M. and Nee, S. (1994) Phylogenies without fossils. Evolution, 48, 523–529.

Nee, S., Holmes, E. C., Rambaut, A. and Harvey, P. H. (1995) Inferring population history from
molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B.
Biological Sciences, 349, 25–31.

See Also

skyline, branching.times, birthdeath, bd.ext, yule.cov plot for the basic plot-
ting function in R

Examples

data(bird.families)
data(bird.orders)
opar <- par(mfrow = c(2, 1))
ltt.plot(bird.families)
title("Lineages Through Time Plot of the Bird Families")
ltt.plot(bird.families, log = "y")
title(main = "Lineages Through Time Plot of the Bird Families",

sub = "(with logarithmic transformation of the y-axis)")
par(opar)
to plot the tree and the LTT plot together
layout(matrix(1:4, 2, 2))
plot(bird.families, show.tip.label = FALSE)
ltt.plot(bird.families, main = "Bird families")
plot(bird.orders, show.tip.label = FALSE)
ltt.plot(bird.orders, main = "Bird orders")
layout(matrix(1))
mltt.plot(bird.families, bird.orders)
Generates 10 random trees with 23 tips:
TR <- replicate(10, rcoal(23), FALSE)
Give names to each tree:
names(TR) <- paste("random tree", 1:10)
And specify the class of the list so that mltt.plot()
does not trash it!
class(TR) <- "multiPhylo"
mltt.plot(TR, bird.orders)
And now for something (not so) completely different:

92 mantel.test

ltt.plot(bird.orders, lwd = 2)
for (i in 1:10) ltt.lines(TR[[i]], lty = 2)
legend(-10, 5, lwd = c(2, 1), lty = c(1, 2), bty = "n",

legend = c("Bird orders", "Random trees"))

mantel.test Mantel Test for Similarity of Two Matrices

Description

This function computes Mantel’s permutation test for similarity of two matrices. It permutes the
rows and columns of the two matrices randomly and calculates a Z-statistic.

Usage

mantel.test(m1, m2, nperm = 1000, graph = FALSE, ...)

Arguments

m1 a numeric matrix giving a measure of pairwise distances, correlations, or simi-
larities among observations.

m2 a second numeric matrix giving another measure of pairwise distances, correla-
tions, or similarities among observations.

nperm the number of times to permute the data.

graph a logical indicating whether to produce a summary graph (by default the graph
is not plotted).

... further arguments to be passed to plot() (to add a title, change the axis labels,
and so on).

Details

The function calculates a Z-statistic for the Mantel test, equal to the sum of the pairwise product
of the lower triangles of the permuted matrices, for each permutation of rows and columns. It
compares the permuted distribution with the Z-statistic observed for the actual data.

If graph = TRUE, the functions plots the density estimate of the permutation distribution along
with the observed Z-statistic as a vertical line.

The ... argument allows the user to give further options to the plot function: the title main be
changed with main=, the axis labels with xlab =, and ylab =, and so on.

Value

z.stat the Z-statistic (sum of rows*columns of lower triangle) of the data matrices.

p P-value (quantile of the observed Z-statistic in the permutation distribution).

matexpo 93

Author(s)

Original code in S by Ben Bolker 〈bolker@zoo.ufl.edu〉, ported to R by Julien Claude 〈claude@isem.univ-
montp2.fr〉

References

Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Can-
cer Research, 27, 209–220.

Manly, B. F. J. (1986) Multivariate statistical methods: a primer. London: Chapman & Hall.

Examples

q1 <- matrix(runif(36), nrow = 6)
q2 <- matrix(runif(36), nrow = 6)
mantel.test(q1, q2, graph = TRUE,

main = "Mantel test: a random example with 6 X 6 matrices",
xlab = "z-statistic", ylab = "Density",
sub = "The vertical line shows the observed z-statistic")

matexpo Matrix Exponential

Description

This function computes the exponential of a square matrix using a spectral decomposition.

Usage

matexpo(x)

Arguments

x a square matrix of mode numeric.

Value

a numeric matrix of the same dimensions than ‘x’.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

Examples

a simple rate matrix:
m <- matrix(0.1, 4, 4)
diag(m) <- -0.3
towards equilibrium:
for (t in c(1, 5, 10, 50)) print(matexpo(m*t))

94 mcmc.popsize

mcmc.popsize Reversible Jump MCMC to Infer Demographic History

Description

These functions implement a reversible jump MCMC framework to infer the demographic history,
as well as corresponding confidence bands, from a genealogical tree. The computed demographic
history is a continous and smooth function in time. mcmc.popsize runs the actual MCMC
chain and outputs information about the sampling steps, extract.popsize generates from this
MCMC output a table of population size in time, and plot.popsize and lines.popsize
provide utility functions to plot the corresponding demographic functions.

Usage

mcmc.popsize(tree,nstep, thinning=1, burn.in=0,progress.bar=TRUE,
method.prior.changepoints=c("hierarchical", "fixed.lambda"), max.nodes=30,

lambda=0.5, gamma.shape=0.5, gamma.scale=2,
method.prior.heights=c("skyline", "constant", "custom"),
prior.height.mean,
prior.height.var)

extract.popsize(mcmc.out, credible.interval=0.95, time.points=200, thinning=1, burn.in=0)
S3 method for class 'popsize':
plot(x, show.median=TRUE, show.years=FALSE, subst.rate, present.year, ...)
S3 method for class 'popsize':
lines(x, show.median=TRUE,show.years=FALSE, subst.rate, present.year, ...)

Arguments

tree Either an ultrametric tree (i.e. an object of class "phylo"), or coalescent inter-
vals (i.e. an object of class "coalescentIntervals").

nstep Number of MCMC steps, i.e. length of the Markov chain (suggested value:
10,000-50,000).

thinning Thinning factor (suggest value: 10-100).

burn.in Number of steps dropped from the chain to allow for a burn-in phase (suggest
value: 1000).

progress.bar Show progress bar during the MCMC run.
method.prior.changepoints

If hierarchicalis chosen (the default) then the smoothing parameter lambda
is drawn from a gamma distribution with some specified shape and scale pa-
rameters. Alternatively, for fixed.lambda the value of lambda is a given
constant.

max.nodes Upper limit for the number of internal nodes of the approximating spline (de-
fault: 30).

mcmc.popsize 95

lambda Smoothing parameter. For method="fixed.lambda" the specifed value of
lambda determines the mean of the prior distribution for the number of inter-
nal nodes of the approximating spline for the demographic function (suggested
value: 0.1-1.0).

gamma.shape Shape parameter of the gamma function from which lambda is drawn for
method="hierarchical".

gamma.scale Scale parameter of the gamma function from which lambda is drawn for method="hierarchical".
method.prior.heights

Determines the prior for the heights of the change points. If custom is chosen
then two functions describing the mean and variance of the heigths in depence of
time have to be specified (via prior.height.mean and prior.height.var
options). Alternatively, two built-in priors are available: constant assumes
constant population size and variance determined by Felsenstein (1992), and
skyline assumes a skyline plot (see Opgen-Rhein et al. 2004 for more de-
tails).

prior.height.mean
Function describing the mean of the prior distribution for the heights (only used
if method.prior.heights = custom).

prior.height.var
Function describing the variance of the prior distribution for the heights (only
used if method.prior.heights = custom).

mcmc.out Output from mcmc.popsize - this is needed as input for extract.popsize.
credible.interval

Probability mass of the confidence band (default: 0.95).

time.points Number of discrete time points in the table output by extract.popsize.

x Table with population size versus time, as computed by extract.popsize.

show.median Plot median rather than mean as point estimate for demographic function (de-
fault: TRUE).

show.years Option that determines whether the time is plotted in units of of substitutions
(default) or in years (requires specification of substution rate and year of present).

subst.rate Substitution rate (see option show.years).

present.year Present year (see option show.years).

... Further arguments to be passed on to plot.

Details

Please refer to Opgen-Rhein et al. (2004) for methodological details, and the help page of skyline
for information on a related approach.

Author(s)

Rainer Opgen-Rhein (http://www.stat.uni-muenchen.de/~opgen/) and Korbinian Strim-
mer (http://www.stat.uni-muenchen.de/~strimmer/). Parts of the rjMCMC sam-
pling procedure are adapted from R code by Karl Browman (http://www.biostat.jhsph.
edu/~kbroman/)

http://www.stat.uni-muenchen.de/~opgen/
http://www.stat.uni-muenchen.de/~strimmer/
http://www.biostat.jhsph.edu/~kbroman/
http://www.biostat.jhsph.edu/~kbroman/

96 mlphylo

References

Opgen-Rhein, R., Fahrmeir, L. and Strimmer, K. 2005. Inference of demographic history from
genealogical trees using reversible jump Markov chain Monte Carlo. BMC Evolutionary Biology,
5, 6.

See Also

skyline and skylineplot.

Examples

get tree
data("hivtree.newick") # example tree in NH format
tree.hiv <- read.tree(text = hivtree.newick) # load tree

run mcmc chain
mcmc.out <- mcmc.popsize(tree.hiv, nstep=100, thinning=1, burn.in=0,progress.bar=FALSE) # toy run
#mcmc.out <- mcmc.popsize(tree.hiv, nstep=10000, thinning=5, burn.in=500) # remove comments!!

make list of population size versus time
popsize <- extract.popsize(mcmc.out)

plot and compare with skyline plot
sk <- skyline(tree.hiv)
plot(sk, lwd=1, lty=3, show.years=TRUE, subst.rate=0.0023, present.year = 1997)
lines(popsize, show.years=TRUE, subst.rate=0.0023, present.year = 1997)

mlphylo Estimating Phylogenies by Maximum Likelihood

Description

mlphylo estimates a phylogenetic tree by maximum likelihood given a set of DNA sequences.
The model of evolution is specified with the function DNAmodel.

logLik, deviance, and AIC are generic functions used to extract the log-likelihood, the de-
viance (-2*logLik), or the Akaike information criterion of a tree. If no such values are available,
NULL is returned.

Usage

mlphylo(x, phy, model = DNAmodel(), search.tree = FALSE,
quiet = FALSE, value = NULL, fixed = FALSE)

S3 method for class 'phylo':
logLik(object, ...)
S3 method for class 'phylo':
deviance(object, ...)
S3 method for class 'phylo':
AIC(object, ..., k = 2)

mlphylo 97

Arguments

x an object of class "DNAbin" giving the (aligned) DNA sequence data.
phy an object of class "phylo" giving the tree.
model an object of class "DNAmodel" giving the model to be fitted.
search.tree a logical specifying whether to search for the best tree (defaults to FALSE) (not

functional for the moment).
quiet a logical specifying whether to display the progress of the analysis.
value a list with elements named rates, alpha, and invar, or at least one of these,

giving the initial values of the parameters of the model. If NULL, some initial
values are given internally.

fixed a logical specifying whether to optimize parameters given in value.
object an object of class "phylo".
k a numeric value giving the penalty per estimated parameter; the default is k =

2 which is the classical Akaike information criterion.
... further arguments passed to or from other methods.

Details

The model specified by DNAmodel is fitted using the standard “pruning” algorithm of Felsenstein
(1981).

The implementation of the inter-sites variation in substitution rates follows the methodology devel-
oped by Yang (1994).

The difference among partitions is parametrized with a contrast parameter (denoted ξ) that specifies
the contrast in mean susbtitution rate among the partitions. This methodology is inspired from one
introduced by Yang (1996).

The substitution rates are indexed column-wise in the rate matrix: the first rate is set to one.

Value

an object of class "phylo". There are possible additional attributes:

loglik the maximum log-likelihood.
npart the number of partitions.
model the substitution model.
rates the estimated substitution rates.
invar the estimated proportion of invariants.
alpha the estimated shape parameter of the inter-sites variation in substitution rates.

Note

For the moment, it is not possible to estimate neither branch lengths, nor the topology with mlphylo.
The function may estimate all other parameters: substitution rates, shape (α) of the inter-sites vari-
ation in substitution rates, the proportion of invariants, and the “contrast” parameter (ξ) among
partitions.

Alternative topologies can also be compared using likelihood-ratio tests (LRTs) or AICs.

98 mrca

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17, 368–376.

Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable
rates over sites: approximate methods. Journal of Molecular Evolution, 39, 306–314.

Yang, Z. (1996) Maximum-likelihood models for combined analyses of multiple sequence data.
Journal of Molecular Evolution, 42, 587–596.

See Also

DNAmodel, nj, read.dna, summary.phylo, bionj, fastme

mrca Find Most Recent Common Ancestors Between Pairs

Description

This function returns for each pair of tips (and nodes) its most recent common ancestor (MRCA).

Usage

mrca(phy, full = FALSE)

Arguments

phy an object of class "phylo".

full a logical indicating whether to return the MRCAs among all tips and nodes (if
TRUE); the default is to return only the MRCAs among tips.

Details

The diagonal is set to the number of the tips (and nodes if full = TRUE).

If full = FALSE, the colnames and rownames are set with the tip labels of the tree; otherwise
the numbers are given as names.

Value

a matrix of mode numeric.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

mst 99

mst Minimum Spanning Tree

Description

The function mst finds the minimum spanning tree between a set of observations using a matrix of
pairwise distances.

The plot method plots the minimum spanning tree showing the links where the observations are
identified by their numbers.

Usage

mst(X)
S3 method for class 'mst':
plot(x, graph = "circle", x1 = NULL, x2 = NULL, ...)

Arguments

X either a matrix that can be interpreted as a distance matrix, or an object of class
"dist".

x an object of class "mst" (e.g. returned by mst()).

graph a character string indicating the type of graph to plot the minimum spanning
tree; two choices are possible: "circle" where the observations are plotted
regularly spaced on a circle, and "nsca" where the two first axes of a non-
symmetric correspondence analysis are used to plot the observations (see Details
below). If both arguments x1 and x2 are given, the argument graph is ignored.

x1 a numeric vector giving the coordinates of the observations on the x-axis. Both
x1 and x2 must be specified to be used.

x2 a numeric vector giving the coordinates of the observations on the y-axis. Both
x1 and x2 must be specified to be used.

... further arguments to be passed to plot().

Details

These functions provide two ways to plot the minimum spanning tree which try to space as much
as possible the observations in order to show as clearly as possible the links. The option graph =
"circle" simply plots regularly the observations on a circle, whereas graph = "nsca" uses
a non-symmetric correspondence analysis where each observation is represented at the centroid of
its neighbours.

Alternatively, the user may use any system of coordinates for the obsevations, for instance a princi-
pal components analysis (PCA) if the distances were computed from an original matrix of continous
variables.

100 multi2di

Value

an object of class "mst" which is a square numeric matrix of size equal to the number of obser-
vations with either 1 if a link between the corresponding observations was found, or 0 otherwise.
The names of the rows and columns of the distance matrix, if available, are given as rownames and
colnames to the returned object.

Author(s)

Yvonnick Noel 〈noel@univ-lille3.fr〉, Julien Claude 〈claude@isem.univ-montp2.fr〉 and Emmanuel
Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

dist.dna, dist.gene, dist, plot

Examples

library(stats)
n <- 20
X <- matrix(runif(n * 10), n, 10)
d <- dist(X)
PC <- prcomp(X)
M <- mst(d)
opar <- par()
par(mfcol = c(2, 2))
plot(M)
plot(M, graph = "nsca")
plot(M, x1 = PC$x[, 1], x2 = PC$x[, 2])
par(opar)

multi2di Collapse and Resolve Multichotomies

Description

These two functions collapse or resolve multichotomies in phylogenetic trees.

Usage

multi2di(phy, random = TRUE)
di2multi(phy, tol = 1e-08)

Arguments

phy an object of class "phylo".
random a logical value specifying whether to resolve the multichotomies randomly (the

default) or in the order they appear in the tree (if random = FALSE).
tol a numeric value giving the tolerance to consider a branch length significantly

greater than zero.

nj 101

Details

multi2di transforms all multichotomies into a series of dichotomies with one (or several) branch(es)
of length zero.

di2multi deletes all branches smaller than tol and collapses the corresponding dichotomies
into a multichotomy.

Value

Both functions return an object of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

is.binary.tree

Examples

data(bird.families)
is.binary.tree(bird.families)
is.binary.tree(multi2di(bird.families))
all.equal(di2multi(multi2di(bird.families)), bird.families)
To see the results of randomly resolving a trichotomy:
tr <- read.tree(text = "(a:1,b:1,c:1);")
layout(matrix(1:4, 2, 2))
for (i in 1:4)
plot(multi2di(tr), use.edge.length = FALSE, cex = 1.5)

layout(matrix(1))

nj Neighbor-Joining Tree Estimation

Description

This function performs the neighbor-joining tree estimation of Saitou and Nei (1987).

Usage

nj(X)

Arguments

X a distance matrix; may be an object of class “dist”.

Value

an object of class "phylo".

102 node.depth

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

See Also

write.tree, read.tree, dist.dna, mlphylo, bionj, fastme

Examples

From Saitou and Nei (1987, Table 1):
x <- c(7, 8, 11, 13, 16, 13, 17, 5, 8, 10, 13,

10, 14, 5, 7, 10, 7, 11, 8, 11, 8, 12,
5, 6, 10, 9, 13, 8)

M <- matrix(0, 8, 8)
M[row(M) > col(M)] <- x
M[row(M) < col(M)] <- x
rownames(M) <- colnames(M) <- 1:8
tr <- nj(M)
plot(tr, "u")
a less theoretical example
data(woodmouse)
trw <- nj(dist.dna(woodmouse))
plot(trw)

node.depth Depth of Nodes and Tips

Description

This function returns the depth of nodes and tips given by the number of descendants (1 is returned
for tips).

Usage

node.depth(phy)

Arguments

phy an object of class "phylo".

Details

The depth of a node is computed as the number of tips which are its descendants. The value of 1 is
given to the tips.

nodelabels 103

Value

A numeric vector indexed with the node numbers of the matrix ‘edge’ of phy.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

plot.phylo

nodelabels Labelling the Nodes, Tips, and Edges of a Tree

Description

These functions add labels to or near the nodes, the tips, or the edges of a tree using text or plotting
symbols. The text can be framed.

Usage

nodelabels(text, node, adj = c(0.5, 0.5), frame = "rect",
pch = NULL, thermo = NULL, pie = NULL, piecol = NULL,
col = "black", bg = "lightblue", ...)

tiplabels(text, tip, adj = c(0.5, 0.5), frame = "rect",
pch = NULL, thermo = NULL, pie = NULL, piecol = NULL,
col = "black", bg = "yellow", ...)

edgelabels(text, edge, adj = c(0.5, 0.5), frame = "rect",
pch = NULL, thermo = NULL, pie = NULL, piecol = NULL,
col = "black", bg = "lightgreen", ...)

Arguments

text a vector of mode character giving the text to be printed. Can be left empty.

node a vector of mode numeric giving the numbers of the nodes where the text or the
symbols are to be printed. Can be left empty.

tip a vector of mode numeric giving the numbers of the tips where the text or the
symbols are to be printed. Can be left empty.

edge a vector of mode numeric giving the numbers of the edges where the text or the
symbols are to be printed. Can be left empty.

adj one or two numeric values specifying the horizontal and vertical, respectively,
justification of the text. By default, the text is centered horizontally and verti-
cally. If a single value is given, this alters only the horizontal position of the
text.

104 nodelabels

frame a character string specifying the kind of frame to be printed around the text.
This must be one of "rect" (the default), "circle", "none", or any unambiguous
abbreviation of these.

pch a numeric giving the type of plotting symbol to be used; this is eventually recy-
cled. See par for R’s plotting symbols. If pch is used, then text is ignored.

thermo a numeric vector giving some proportions (values between 0 and 1) for each
node, or a numeric matrix giving some proportions (the rows must sum to one).

pie same than thermo.

piecol a list of colours (given as a character vector) to be used by thermo or pie; if
left NULL, a series of colours given by the function rainbow is used.

col a character string giving the color to be used for the text or the plotting symbols;
this is eventually recycled.

bg a character string giving the color to be used for the background of the text
frames or of the plotting symbols if it applies; this is eventually recycled.

... further arguments passed to the text or points functions (e.g. cex to alter
the size of the text or the symbols, or font for the text; see the examples below).

Details

These three functions have the same optional arguments and the same functioning.

If the arguments text is missing and pch and thermo are left as NULL, then the numbers of the
nodes (or of the tips) are printed.

If node, tip, or edge is missing, then the text or the symbols are printed on all nodes, tips, or
edges.

The option cex can be used to change the size of all types of labels.

A simple call of these functions with no arguments (e.g., nodelabels()) prints the numbers of
all nodes (or tips).

In the case of tiplabels, it would be useful to play with the options x.lim and label.offset
(and possibly show.tip.label) of plot.phylo in most cases (see the examples).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉, Ben Bolker 〈bolker@zoo.ufl.edu〉, and Jim
Lemon

See Also

plot.phylo

Examples

tr <- read.tree(text = "((Homo,Pan),Gorilla);")
plot(tr)
nodelabels("7.3 Ma", 4, frame = "r", bg = "yellow", adj = 0)
nodelabels("5.4 Ma", 5, frame = "c", bg = "tomato", font = 3)

nodelabels 105

data(bird.orders)
plot(bird.orders, use.edge.length = FALSE, font = 1)
bs <- round(runif(22, 90, 100), 0) # some imaginary bootstrap values
bs2 <- round(runif(22, 90, 100), 0)
bs3 <- round(runif(22, 90, 100), 0)
nodelabels(bs, adj = 1.2)
nodelabels(bs2, adj = -0.2, bg = "yellow")

something more classical
plot(bird.orders, use.edge.length = FALSE, font = 1)
nodelabels(bs, adj = -0.2, frame = "n", cex = 0.8)
nodelabels(bs2, adj = c(1.2, 1), frame = "n", cex = 0.8)
nodelabels(bs3, adj = c(1.2, -0.2), frame = "n", cex = 0.8)

the same but we play with the font
plot(bird.orders, use.edge.length = FALSE, font = 1)
nodelabels(bs, adj = -0.2, frame = "n", cex = 0.8, font = 2)
nodelabels(bs2, adj = c(1.2, 1), frame = "n", cex = 0.8, font = 3)
nodelabels(bs3, adj = c(1.2, -0.2), frame = "n", cex = 0.8)

plot(bird.orders, "c", use.edge.length = FALSE, font = 1)
nodelabels(thermo = runif(22), cex = .8)

plot(bird.orders, "u", FALSE, font = 1, lab4ut = "a")
nodelabels(cex = .75, bg = "yellow")

representing two characters at the tips (you could have as many
as you want)
plot(bird.orders, "c", FALSE, font = 1, label.offset = 3,

x.lim = 31, no.margin = TRUE)
tiplabels(pch = 21, bg = gray(1:23/23), cex = 2, adj = 1.4)
tiplabels(pch = 19, col = c("yellow", "red", "blue"), adj = 2.5, cex = 2)
This can be used to highlight tip labels:
plot(bird.orders, font = 1)
i <- c(1, 7, 18)
tiplabels(bird.orders$tip.label[i], i, adj = 0)
Some random data to compare piecharts and thermometres:
tr <- rtree(15)
x <- runif(14, 0, 0.33)
y <- runif(14, 0, 0.33)
z <- runif(14, 0, 0.33)
x <- cbind(x, y, z, 1 - x - y - z)
layout(matrix(1:2, 1, 2))
plot(tr, "c", FALSE, no.margin = TRUE)
nodelabels(pie = x, cex = 1.3)
text(4.5, 15, "Are you \"pie\"...", font = 4, cex = 1.5)
plot(tr, "c", FALSE, no.margin = TRUE)
nodelabels(thermo = x, col = rainbow(4), cex = 1.3)
text(4.5, 15, "... or \"thermo\"?", font = 4, cex = 1.5)
layout(matrix(1))
plot(tr, main = "Showing Edge Lengths")
edgelabels(round(tr$edge.length, 3), srt = 90)
plot(tr, "p", FALSE)

106 nuc.div

edgelabels("above", adj = c(0.5, -0.25), bg = "yellow")
edgelabels("below", adj = c(0.5, 1.25), bg = "lightblue")

nuc.div Nucleotide Diversity

Description

This function computes the nucleotide diversity from a sample of DNA sequences.

Usage

nuc.div(x, variance = FALSE, pairwise.deletion = FALSE)

Arguments

x a matrix or a list which contains the DNA sequences.

variance a logical indicating whether to compute the variance of the estimated nucleotide
diversity.

pairwise.deletion
a logical indicating whether to delete the sites with missing data in a pairwise
way. The default is to delete the sites with at least one missing data for all
sequences.

Details

The nucleotide diversity is the sum of the number of differences between pairs of sequences divided
by the number of comparisons (i.e. n(n - 1)/2, where n is the number of sequences).

The variance of the estimated diversity uses formula (10.9) from Nei (1987). This applies only if
all sequences are of the same lengths, and cannot be used if pairwise.deletion = TRUE. A
bootstrap estimate may be in order if you insist on using the latter option.

Value

A numeric vector with one or two values (if variance = TRUE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Nei, M. (1987) Molecular evolutionary genetics. New York: Columbia University Press.

See Also

base.freq, GC.content, theta.s, seg.sites

opsin 107

Examples

data(woodmouse)
nuc.div(woodmouse)
nuc.div(woodmouse, TRUE)
nuc.div(woodmouse, FALSE, TRUE)

opsin Gene Tree of 32 opsin Sequences

Description

This data set describes a gene tree estimated from 32 opsin sequences.

Usage

data(opsin.newick)

Format

opsin.newick is a string with the tree in Newick format.

Source

This tree is described in Misawa and Tajima (2000) as an example for application of the Klastorin
(1982) classification method.

References

Misawa, K. (2000) A simple method for classifying genes and a bootstrap test for classifications.
Molecular Biology and Evolution, 17, 1879–1884.

See Also

klastorin.

Examples

example tree in NH format (a string)
data("opsin.newick")
opsin.newick

get corresponding phylo object
tree.opsin <- read.tree(text = opsin.newick)

plot tree
plot(tree.opsin, label.offset = 0.01)

108 phymltest

phymltest Fits a Bunch of Models with PHYML

Description

This function calls the software PHYML and fits successively 28 models of DNA evolution. The
results are saved on disk, as PHYML usually does, and returned in R as a vector with the log-
likelihood value of each model.

Usage

phymltest(seqfile, format = "interleaved", itree = NULL,
exclude = NULL, execname, path2exec = NULL)

S3 method for class 'phymltest':
print(x, ...)
S3 method for class 'phymltest':
summary(object, ...)
S3 method for class 'phymltest':
plot(x, main = NULL, col = "blue", ...)

Arguments

seqfile a character string giving the name of the file that contains the DNA sequences
to be analysed by PHYML.

format a character string specifying the format of the DNA sequences: either "interleaved"
(the default), or "sequential".

itree a character string giving the name of a file with a tree in Newick format to
be used as an initial tree by PHYML. If NULL (the default), PHYML uses a
“BIONJ” tree.

exclude a vector of mode character giving the models to be excluded from the analysis.
These must be among those below, and follow the same syntax.

execname a character string specifying the name of the PHYML binary file. This argument
can be left missing under Windows: the default name "phyml_w32" will then
be used.

path2exec a character string giving the path to the PHYML binary file. If NULL the file
must be accessible to R (either it is in the computer path, or it is in R’s working
directory).

x an object of class "phymltest".

object an object of class "phymltest".

main a title for the plot; if left NULL, a title is made with the name of the object (use
main = "" to have no title).

col a colour used for the segments showing the AIC values (blue by default).

... further arguments passed to or from other methods.

phymltest 109

Details

The present function has been tested with version 2.4 of PHYML; it should also work with version
2.3, but it won’t work with version 2.1.

Under unix-like systems, it seems necessary to run R from csh or a similar shell (sh might not
work).

The user must take care to set correctly the three different paths involved here: the path to PHYML’s
binary, the path to the sequence file, and the path to R’s working directory. The function should work
if all three paths are different. Obviously, there should be no problem if they are all the same.

If the usual output files of PHYML already exist, they are not deleted and PHYML’s results are
appended.

The following syntax is used for the models:

"X[Y][Z]00[+I][+G]"

where "X" is the first letter of the author of the model, "Y" and "Z" are possibly other co-authors
of the model, "00" is the year of the publication of the model, and "+I" and "+G" indicates whether
the presence of invariant sites and/or a gamma distribution of substitution rates have been specified.
Thus, Kimura’s model is denoted "K80" and not "K2P". The exception to this rule is the general
time-reversible model which is simple denoted "GTR" model.

The seven substitution models used are: "JC69", "K80", "F81", "F84", "HKY85", "TN93", and
"GTR". These models are then altered by adding the "+I" and/or "+G", resulting thus in four
variants for each of them (e.g., "JC69", "JC69+I", "JC69+G", "JC69+I+G"). Some of these models
are described in the help page of dist.dna.

When a gamma distribution of substitution rates is specified, four categories are used (which is
PHYML’s default behaviour), and the “alpha” parameter is estimated from the data.

For the models with a different substition rate for transitions and transversions, these rates are left
free and estimated from the data (and not constrained with a ratio of 4 as in PHYML’s default).

Value

phymltest returns an object of class "phymltest": a numeric vector with the models as
names.

The printmethod prints an object of class "phymltest" as matrix with the name of the models,
the number of free parameters, the log-likelihood value, and the value of the Akaike information
criterion (AIC = -2 * loglik + 2 * number of free parameters)

The summarymethod prints all the possible likelihood ratio tests for an object of class "phymltest".

The plot method plots the values of AIC of an object of class "phymltest" on a vertical scale.

Note

It is important to note that the models fitted by this function is only a small fraction of the models
possible with PHYML. For instance, it is possible to vary the number of categories in the (dis-
cretized) gamma distribution of substitution rates, and many parameters can be fixed by the user.
The results from the present function should rather be taken as indicative of a best model.

110 pic

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Posada, D. and Crandall, K. A. (2001) Selecting the best-fit model of nucleotide substitution. Sys-
tematic Biology, 50, 580–601.

Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylo-
genies by maximum likelihood. Systematic Biology, 52, 696–704. http://atgc.lirmm.fr/
phyml/

See Also

read.tree, write.tree, dist.dna

Examples

A `fake' example with random likelihood values: it does not
make sense, but does not need PHYML and gives you a flavour
of what the output looks like:
x <- runif(28, -100, -50)
names(x) <- .phymltest.model
class(x) <- "phymltest"
x
summary(x)
plot(x)
plot(x, main = "", col = "red")
This example needs PHYML, copy/paste or type the
following commands if you want to try them, eventually
changing setwd() and the options of phymltest()
Not run:
setwd("D:/phyml_v2.4/exe") # under Windows
data(woodmouse)
write.dna(woodmouse, "woodmouse.txt")
X <- phymltest("woodmouse.txt")
X
summary(X)
plot(X)
End(Not run)

pic Phylogenetically Independent Contrasts

Description

Compute the phylogenetically independent contrasts using the method described by Felsenstein
(1985).

http://atgc.lirmm.fr/phyml/
http://atgc.lirmm.fr/phyml/

pic 111

Usage

pic(x, phy, scaled = TRUE, var.contrasts = FALSE)

Arguments

x a numeric vector.

phy an object of class "phylo".

scaled logical, indicates whether the contrasts should be scaled with their expected
variance (default to TRUE).

var.contrasts
logical, indicates whether the expected variance of the contrasts should be re-
turned (default to FALSE).

Details

If x has names, its values are matched to the tip labels of phy, otherwise its values are taken to be
in the same order than the tip labels of phy.

The user must be careful here since the function requires that both series of names perfectly match,
so this operation may fail if there is a typing or syntax error. If both series of names do not match,
the values in the x are taken to be in the same order than the tip labels of phy, and a warning
message is issued.

Value

either a vector of phylogenetically independent contrasts (if var.contrasts = FALSE), or a
two-column matrix with the phylogenetically independent contrasts in the first column and their
expected variance in the second column (if var.contrasts = TRUE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist, 125, 1–15.

See Also

read.tree, compar.gee, compar.lynch

Examples

The example in Phylip 3.5c (originally from Lynch 1991)
cat("((((Homo:0.21,Pongo:0.21):0.28,",

"Macaca:0.49):0.13,Ateles:0.62):0.38,Galago:1.00);",
file = "ex.tre", sep = "\n")

tree.primates <- read.tree("ex.tre")
X <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
Y <- c(4.74493, 3.33220, 3.36730, 2.89037, 2.30259)

112 plot.ancestral

names(X) <- names(Y) <- c("Homo", "Pongo", "Macaca", "Ateles", "Galago")
pic.X <- pic(X, tree.primates)
pic.Y <- pic(Y, tree.primates)
cor.test(pic.X, pic.Y)
lm(pic.Y ~ pic.X - 1) # both regressions
lm(pic.X ~ pic.Y - 1) # through the origin
unlink("ex.tre") # delete the file "ex.tre"

plot.ancestral Plot Ancestral Character Values on a Tree

Description

Plot a phylogenetic tree with edge colors picked according to the corresponding node ancestral
character value.

Usage

S3 method for class 'ancestral':
plot(x, which = names(x$node.character), n.col = 10,
col.fun = function(n) rainbow(n, start = 0.4, end = 0),
plot.node.values = FALSE,
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...)

Arguments

x An object of class ’ancestral’.

which Which characters to plot. Can be a vecotr of names, or a vector of indices.

n.col The number of colors to use in the gradient.

col.fun the color function to use.
plot.node.values

Should character values used as node labels?

ask Ask before each plot?

... Further parameters to pass to the plot.phylo function.

Details

This function produces one plot by selected ancestral character. It uses the plot.phylo function with
particular arguments to display edge colors according to ancestral character values.

Author(s)

Julien Dutheil 〈Julien.Dutheil@univ-montp2.fr〉

plot.correlogram 113

See Also

plot.phylo, evolve.phylo

Examples

data(bird.orders)
x <- rep(0, 4)
names(x) <- c("A", "B", "C", "D")
anc <- evolve.phylo(bird.orders, x, 1)
plot(anc, edge.width = 3, plot.node.values = TRUE)
par(mfrow = c(2, 2), mar = c(5.5, 0, 0, 0))
plot(anc, edge.width = 3, type = "r")

plot.correlogram Plot a Correlogram

Description

These functions plot correlagrams previously computed with correlogram.formula.

Usage

S3 method for class 'correlogram':
plot(x, legend = TRUE, test.level = 0.05,

col = c("grey", "red"), type = "b", xlab = "",
ylab = "Moran's I", pch = 21, cex = 2, ...)

S3 method for class 'correlogramList':
plot(x, lattice = TRUE, legend = TRUE,

test.level = 0.05, col = c("grey", "red"),
xlab = "", ylab = "Moran's I",
type = "b", pch = 21, cex = 2, ...)

Arguments

x an object of class "correlogram" or of class "correlogramList" (both
produced by correlogram.formula).

legend should a legend be added on the plot?

test.level the level used to discriminate the plotting symbols with colours considering the
P-values.

col two colours for the plotting symbols: the first one is used if the P-value is greater
than or equal to test.level, the second one otherwise.

type the type of plot to produce (see plot for possible choices).

xlab an optional character string for the label on the x-axis (none by default).

ylab the default label on the y-axis.

pch the type of plotting symbol.

114 plot.phylo

cex the default size for the plotting symbols.

lattice when plotting several correlograms, should they be plotted in trellis-style with
lattice (the default), or together on the same plot?

... other parameters passed to the plot or lines function.

Details

When plotting several correlograms with lattice, some options have no effect: legend, type, and
pch (pch=19 is always used in this situation).

When using pch between 1 and 20 (i.e., non-filled symbols, the colours specified in col are also
used for the lines joining the points. To keep black lines, it is better to leave pch between 21 and
25.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

correlogram.formula, Moran.I

plot.phylo Plot Phylogenies

Description

These functions plot phylogenetic trees on the current graphical device.

Usage

S3 method for class 'phylo':
plot(x, type = "phylogram", use.edge.length = TRUE,

node.pos = NULL, show.tip.label = TRUE, show.node.label = FALSE,
edge.color = "black", edge.width = 1, font = 3,
cex = par("cex"), adj = NULL, srt = 0, no.margin = FALSE,
root.edge = FALSE, label.offset = 0, underscore = FALSE,
x.lim = NULL, y.lim = NULL, direction = "rightwards",
lab4ut = "horizontal", tip.color = "black", ...)

S3 method for class 'multiPhylo':
plot(x, layout = 1, ...)

plot.phylo 115

Arguments

x an object of class "phylo" or of class "multiPhylo".

type a character string specifying the type of phylogeny to be drawn; it must be one
of "phylogram" (the default), "cladogram", "fan", "unrooted", "radial" or any
unambiguous abbreviation of these.

use.edge.length
a logical indicating whether to use the edge lengths of the phylogeny to draw the
branches (the default) or not (if FALSE). This option has no effect if the object
of class "phylo" has no ‘edge.length’ element.

node.pos a numeric taking the value 1 or 2 which specifies the vertical position of the
nodes with respect to their descendants. If NULL (the default), then the value is
determined in relation to ‘type’ and ‘use.edge.length’ (see details).

show.tip.label
a logical indicating whether to show the tip labels on the phylogeny (defaults to
TRUE, i.e. the labels are shown).

show.node.label
a logical indicating whether to show the node labels on the phylogeny (defaults
to FALSE, i.e. the labels are not shown).

edge.color a vector of mode character giving the colours used to draw the branches of the
plotted phylogeny. These are taken to be in the same order than the component
edge of phy. If fewer colours are given than the length of edge, then the
colours are recycled.

edge.width a numeric vector giving the width of the branches of the plotted phylogeny.
These are taken to be in the same order than the component edge of phy. If
fewer widths are given than the length of edge, then these are recycled.

font an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3
(italic, the default), or 4 (bold italic).

cex a numeric value giving the factor scaling of the tip and node labels (Character
EXpansion). The default is to take the current value from the graphical parame-
ters.

adj a numeric specifying the justification of the text strings of the labels: 0 (left-
justification), 0.5 (centering), or 1 (right-justification). This option has no effect
if type = "unrooted". If NULL (the default) the value is set with respect
of direction (see details).

srt a numeric giving how much the labels are rotated in degrees (negative values are
allowed resulting in clock-like rotation); the value has an effect respectively to
the value of direction (see Examples). This option has no effect if type =
"unrooted".

no.margin a logical. If TRUE, the margins are set to zero and the plot uses all the space
of the device (note that this was the behaviour of plot.phylo up to version
0.2-1 of ‘ape’ with no way to modify it by the user, at least easily).

root.edge a logical indicating whether to draw the root edge (defaults to FALSE); this has
no effect if ‘use.edge.length = FALSE’ or if ‘type = "unrooted"’.

label.offset a numeric giving the space between the nodes and the tips of the phylogeny and
their corresponding labels. This option has no effect if type = "unrooted".

116 plot.phylo

underscore a logical specifying whether the underscores in tip labels should be written as
spaces (the default) or left as are (if TRUE).

x.lim a numeric vector of length one or two giving the limit(s) of the x-axis. If NULL,
this is computed with respect to various parameters such as the string lengths of
the labels and the branch lengths. If a single value is given, this is taken as the
upper limit.

y.lim same than above for the y-axis.

direction a character string specifying the direction of the tree. Four values are possible:
"rightwards" (the default), "leftwards", "upwards", and "downwards".

lab4ut (= labels for unrooted trees) a character string specifying the display of tip la-
bels for unrooted trees: either "horizontal" where all labels are horizontal
(the default), or "axial" where the labels are displayed in the axis of the
corresponding terminal branches. This option has an effect only if type =
"unrooted".

tip.color the colours used for the tip labels, eventually recycled (see examples).

layout the number of trees to be plotted simultaneously.

... further arguments to be passed to plot or to plot.phylo.

Details

If x is a list of trees (i.e., an object of class "multiPhylo"), then any further argument may be
passed with ... and could be any one of those listed above for a single tree.

The font format of the labels of the nodes and the tips is the same.

If no.margin = TRUE, the margins are set to zero and are not restored after plotting the tree, so
that the user can access the coordinates system of the plot.

The option ‘node.pos’ allows the user to alter the vertical position (i.e. ordinates) of the nodes. If
node.pos = 1, then the ordinate of a node is the mean of the ordinates of its direct descendants
(nodes and/or tips). If node.pos = 2, then the ordinate of a node is the mean of the ordinates
of all the tips of which it is the ancestor. If node.pos = NULL (the default), then its value
is determined with respect to other options: if type = "phylogram" then ‘node.pos = 1’; if
type = "cladogram" and use.edge.length = FALSE then ‘node.pos = 2’; if type =
"cladogram" and use.edge.length = TRUE then ‘node.pos = 1’. Remember that in this
last situation, the branch lengths make sense when projected on the x-axis.

If adj is not specified, then the value is determined with respect to direction: if direction
= "leftwards" then adj = 1 (0 otherwise).

If the arguments x.lim and y.lim are not specified by the user, they are determined roughly by
the function. This may not always give a nice result: the user may check these values with the
(invisibly) returned list (see “Value:”).

If you resize manually the graphical device (windows or X11) you may need to replot the tree.

Value

plot.phylo returns invisibly a list with the following components which values are those used
for the current plot:

plot.phylo 117

type
use.edge.length

node.pos
show.tip.label

show.node.label

font

cex

adj

srt

no.margin

label.offset

x.lim

y.lim

direction

tip.color

Ntip

Nnode

Note

The argument asp cannot be passed with

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.tree, add.scale.bar, axisPhylo, nodelabels, plot for the basic plotting func-
tion in R

Examples

An extract from Sibley and Ahlquist (1990)
cat("(((Strix_aluco:4.2,Asio_otus:4.2):3.1,",

"Athene_noctua:7.3):6.3,Tyto_alba:13.5);",
file = "ex.tre", sep = "\n")

tree.owls <- read.tree("ex.tre")
plot(tree.owls)
unlink("ex.tre") # delete the file "ex.tre"

Show the types of trees.
layout(matrix(1:6, 3, 2))

118 plot.phylo

plot(tree.owls, main = "With branch lengths")
plot(tree.owls, type = "c")
plot(tree.owls, type = "u")
plot(tree.owls, use.edge.length = FALSE, main = "Without branch lengths")
plot(tree.owls, type = "c", use.edge.length = FALSE)
plot(tree.owls, type = "u", use.edge.length = FALSE)
layout(matrix(1))

data(xenarthra)
plot(xenarthra)
remove the margins...
plot(xenarthra, no.margin = TRUE)
... and use a smaller font size
plot(xenarthra, no.margin = TRUE, cex = 0.8)
plot(xenarthra, type = "c", no.margin = TRUE,

use.edge.length = FALSE, cex = 0.8)
par(mar = c(5.1, 4.1, 4.1, 2.1))

data(bird.orders)
using random colours and thickness
plot(bird.orders,

edge.color = sample(colors(), length(bird.orders$edge)/2),
edge.width = sample(1:10, length(bird.orders$edge)/2, replace = TRUE))

title("Random colours and branch thickness")
rainbow colouring...
X <- c("red", "orange", "yellow", "green", "blue", "purple")
plot(bird.orders,

edge.color = sample(X, length(bird.orders$edge)/2, replace = TRUE),
edge.width = sample(1:10, length(bird.orders$edge)/2, replace = TRUE))

title("Rainbow colouring")
plot(bird.orders, type = "c", use.edge.length = FALSE,

edge.color = sample(X, length(bird.orders$edge)/2, replace = TRUE),
edge.width = rep(5, length(bird.orders$edge)/2))

segments(rep(0, 6), 6.5:1.5, rep(2, 6), 6.5:1.5, lwd = 5, col = X)
text(rep(2.5, 6), 6.5:1.5, paste(X, "..."), adj = 0)
title("Character mapping...")
plot(bird.orders, "u", font = 1, cex = 0.75)
data(bird.families)
plot(bird.families, "u", lab4ut = "axial", font = 1, cex = 0.5)
plot(bird.families, "r", font = 1, cex = 0.5)
cladogram with oblique tip labels
plot(bird.orders, "c", FALSE, direction = "u", srt = -40, x.lim = 25.5)
facing trees with different informations...
tr <- bird.orders
tr$tip.label <- rep("", 23)
layout(matrix(1:2, 1, 2), c(5, 4))
plot(bird.orders, "c", FALSE, adj = 0.5, no.margin = TRUE, label.offset = 0.8,

edge.color = sample(X, length(bird.orders$edge)/2, replace = TRUE),
edge.width = rep(5, length(bird.orders$edge)/2))

text(7.5, 23, "Facing trees with\ndifferent informations", font = 2)
plot(tr, "p", direction = "l", no.margin = TRUE,

edge.width = sample(1:10, length(bird.orders$edge)/2, replace = TRUE))
Recycling of arguments gives a lot of possibilities

plot.varcomp 119

for tip labels:
plot(bird.orders, tip.col = c(rep("red", 5), rep("blue", 18)),

font = c(rep(3, 5), rep(2, 17), 1))
plot(bird.orders, tip.col = c("blue", "green"),

cex = 23:1/23 + .3, font = 1:3)
co <- c(rep("blue", 9), rep("green", 35))
plot(bird.orders, "f", edge.col = co)
plot(bird.orders, edge.col = co)
layout(1)

plot.varcomp Plot Variance Components

Description

Plot previously estimated variance components.

Usage

S3 method for class 'varcomp':
plot(x, xlab = "Levels", ylab = "Variance", type = "b", ...)

Arguments

x A varcomp object

xlab x axis label

ylab y axis label

type plot type ("l", "p" or "b", see plot)

... Further argument sent to the xyplot function.

Value

The same as xyplot.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

See Also

varcomp

120 print.phylo

print.phylo Compact Display of a Phylogeny

Description

These functions prints a compact summary of a phylogeny, or a list of, on the console.

The operators [, [[, and $ propagate the class correctly.

Usage

S3 method for class 'phylo':
print(x, printlen = 6 ,...)
S3 method for class 'multiPhylo':
print(x, details = FALSE ,...)
S3 method for class 'multiPhylo':
x[i]
S3 method for class 'multiPhylo':
x[[i]]
S3 method for class 'multiPhylo':
x$name
S3 method for class 'multiPhylo':
str(object, ...)

Arguments

x an object of class "phylo" or "multiPhylo".

object an object of class "multiPhylo".

printlen the number of labels to print (6 by default).

details a logical indicating whether to print information on all trees.

i indices of the tree(s) to select from a list; this may be a vector of integers, logi-
cals, or names.

name a character string specifying the tree to be extracted.

... further arguments passed to or from other methods.

Value

An object of class "phylo" ([[, $) or of class "multiPhylo" ([[), or NULL.

Author(s)

Ben Bolker 〈bolker@zoo.ufl.edu〉 and Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.tree, summary.phylo, print for the generic R function

ratogram 121

ratogram Ratogram Computed by Nonparametric Rate Smoothing

Description

ratogram computes a ratogram from a phylogram by applying the NPRS (nonparametric rate
smoothing) algorithm described in Sanderson (1997).

Usage

ratogram(phy, scale = 1, expo = 2, minEdgeLength = 1e-06)

Arguments

phy A phylogenetic tree (i.e. an object of class "phylo"), where the branch lengths
are measured in substitutions.

scale Age of the root in the chronogram corresponding to the inferred ratogram(default
value: 0).

expo Exponent in the objective function (default value: 2)
minEdgeLength

Minimum edge length in the phylogram (default value: 1e-06). If any branch
lengths are smaller then they will be set to this value.

Details

Please refer to Sanderson (1997) for mathematical details

Value

chronogram returns an object of class "phylo". The branch lengths of this tree will be the
absolute rates estimated for each branch.

Author(s)

Gangolf Jobb (http://www.treefinder.de) and Korbinian Strimmer (http://www.stat.
uni-muenchen.de/~strimmer/)

References

Sanderson, M. J. (1997) A nonparametric approach to estimating divergence times in the absence
of rate constancy. Molecular Biology and Evolution, 14, 1218–1231.

See Also

chronogram, NPRS.criterion.

http://www.treefinder.de
http://www.stat.uni-muenchen.de/~strimmer/
http://www.stat.uni-muenchen.de/~strimmer/

122 read.GenBank

Examples

get tree
data("landplants.newick") # example tree in NH format
tree.landplants <- read.tree(text = landplants.newick)

plot tree
tree.landplants
plot(tree.landplants, label.offset = 0.001)

estimate ratogram
rato.plants <- ratogram(tree.landplants)

plot
plot(rato.plants, label.offset = 0.001)

read.GenBank Read DNA Sequences from GenBank via Internet

Description

This function connects to the GenBank database, and reads nucleotide sequences using accession
numbers given as arguments.

Usage

read.GenBank(access.nb, seq.names = access.nb,
species.names = TRUE, as.character = FALSE)

Arguments

access.nb a vector of mode character giving the accession numbers.

seq.names the names to give to each sequence; by default the accession numbers are used.
species.names

a logical indicating whether to attribute the species names to the returned object.

as.character a logical controlling whether to return the sequences as an object of class "DNAbin"
(the default).

Details

The function uses the site http://www.ncbi.nlm.nih.gov/ from where the sequences are
downloaded.

If species.names = TRUE, the returned list has an attribute "species" containing the names
of the species taken from the field “ORGANISM” in GenBank.

Value

A list of DNA sequences made of vectors of class "DNAbin", or of single characters (if as.character
= "TRUE").

http://www.ncbi.nlm.nih.gov/

read.caic 123

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.dna, write.dna, dist.dna, DNAbin

Examples

This won't work if your computer is not connected
to the Internet!!!
###
Get the 8 sequences of tanagers (Ramphocelus)
as used in Paradis (1997)
ref <- c("U15717", "U15718", "U15719", "U15720",

"U15721", "U15722", "U15723", "U15724")
Copy/paste or type the following commands if you
want to try them.
Not run:
Rampho <- read.GenBank(ref)
get the species names:
attr(Rampho, "species")
build a matrix with the species names and the accession numbers:
cbind(attr(Rampho, "species"), names(Rampho))
print the first sequence
(can be done with `Rampho$U15717' as well)
Rampho[[1]]
print the first sequence in a cleaner way
cat(Rampho[[1]], "\n", sep = "")
End(Not run)

read.caic Read Tree File in CAIC Format

Description

This function reads one tree from a CAIC file. A second file containing branch lengths values may
also be passed (experimental).

Usage

read.caic(file, brlen = NULL, skip = 0, comment.char = "#", ...)

Arguments

file a file name specified by either a variable of mode character, or a double-quoted
string.

brlen a file name for the branch lengths file.

124 read.caic

skip the number of lines of the input file to skip before beginning to read data (this is
passed directly to scan()).

comment.char a single character, the remaining of the line after this character is ignored (this
is passed directly to scan()).

... Further arguments to be passed to scan().

Details

Read a tree from a file in the format used by the CAIC and MacroCAIc program.

Value

an object of class "phylo" with the following components:

edge a two-column matrix of mode character where each row represents an edge of
the tree; the nodes and the tips are symbolized with numbers (these numbers
are not treated as numeric, hence the mode character); the nodes are represented
with negative numbers (the root being "-1"), and the tips are represented with
positive numbers. For each row, the first column gives the ancestor. This repre-
sentation allows an easy manipulation of the tree, particularly if it is rooted.

edge.length a numeric vector giving the lengths of the branches given by edge.

tip.label a vector of mode character giving the names of the tips; the order of the names
in this vector corresponds to the (positive) number in edge.

node.label (optional) a vector of mode character giving the names of the nodes (set to
NULL if not available in the file).

root.edge (optional) a numeric value giving the length of the branch at the root is it exists
(NULL otherwise).

Warning

The branch length support is still experimental and was not fully tested.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Purvis, A. and Rambaut, A. (1995) Comparative analysis by independent contrasts (CAIC): an
Apple Macintosh application for analysing comparative data. CABIOS, 11 :241–251.

See Also

read.tree, read.nexus

read.dna 125

Examples

The same example than in read.tree, without branch lengths.
An extract from Sibley and Ahlquist (1990)
cat("AAA","Strix_aluco","AAB","Asio_otus",

"AB","Athene_noctua","B","Tyto_alba",
file = "ex.tre", sep = "\n")

tree.owls <- read.caic("ex.tre")
plot(tree.owls)
tree.owls
unlink("ex.tre") # delete the file "ex.tre"

read.dna Read DNA Sequences in a File

Description

This function reads DNA sequences in a file, and returns a matrix or a list of DNA sequences with
the names of the taxa read in the file as rownames or names, respectively. By default, the sequences
are stored in binary format, otherwise (if as.character = "TRUE") in lower case.

Usage

read.dna(file, format = "interleaved", skip = 0,
nlines = 0, comment.char = "#", seq.names = NULL,
as.character = FALSE)

Arguments

file a file name specified by either a variable of mode character, or a double-quoted
string.

format a character string specifying the format of the DNA sequences. Three choices
are possible: "interleaved", "sequential", or "fasta", or any un-
ambiguous abbreviation of these.

skip the number of lines of the input file to skip before beginning to read data.

nlines the number of lines to be read (by default the file is read untill its end).

comment.char a single character, the remaining of the line after this character is ignored.

seq.names the names to give to each sequence; by default the names read in the file are
used.

as.character a logical controlling whether to return the sequences as an object of class "DNAbin"
(the default).

126 read.dna

Details

This function follows the interleaved and sequential formats defined in PHYLIP (Felsenstein, 1993)
but with the original feature than there is no restriction on the lengths of the taxa names (though
a data file with 10-characters-long taxa names is fine as well). For these two formats, the first
line of the file must contain the dimensions of the data (the numbers of taxa and the numbers of
nucleotides); the sequences are considered as aligned and thus must be of the same lengths for
all taxa. For the FASTA format, the conventions defined in the URL below (see References) are
followed; the sequences are taken as non-aligned. For all formats, the nucleotides can be arranged
in any way with blanks and line-breaks inside (with the restriction that the first ten nucleotides must
be contiguous for the interleaved and sequential formats, see below). The names of the sequences
are read in the file unless the ‘seq.names’ option is used. Particularities for each format are detailed
below.

Interleaved: the function starts to read the sequences when it finds 10 contiguous characters belonging
to the ambiguity code of the IUPAC (namely A, C, G, T, U, M, R, W, S, Y, K, V, H, D, B, and
N, upper- or lowercase, so you might run into trouble if you have a taxa name with 10 contiguous
letters among these!) All characters before the sequences are taken as the taxa names after removing
the leading and trailing spaces (so spaces in a taxa name are allowed). It is assumed that the taxa
names are not repeated in the subsequent blocks of nucleotides.

Sequential: the same criterion than for the interleaved format is used to start reading the sequences and
the taxa names; the sequences are then read until the number of nucleotides specified in the first line
of the file is reached. This is repeated for each taxa.

FASTA: This looks like the sequential format but the taxa names (or rather a description of the sequence)
are on separate lines beginning with a ‘greater than’ character “>” (there may be leading spaces
before this character). These lines are taken as taxa names after removing the “>” and the possible
leading and trailing spaces. All the data in the file before the first sequence is ignored.

Value

a matrix or a list (if format = "fasta") of DNA sequences stored in binary format, or of mode
character (if as.character = "TRUE").

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Anonymous. FASTA format description. http://www.ncbi.nlm.nih.gov/BLAST/fasta.
html

Anonymous. IUPAC ambiguity codes. http://www.ncbi.nlm.nih.gov/SNP/iupac.
html

Felsenstein, J. (1993) Phylip (Phylogeny Inference Package) version 3.5c. Department of Genetics,
University of Washington. http://evolution.genetics.washington.edu/phylip/
phylip.html

http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/SNP/iupac.html
http://www.ncbi.nlm.nih.gov/SNP/iupac.html
http://evolution.genetics.washington.edu/phylip/phylip.html
http://evolution.genetics.washington.edu/phylip/phylip.html

read.nexus 127

See Also

read.GenBank, write.dna, DNAbin, dist.dna, woodmouse

Examples

a small extract from `data(woddmouse)'
cat("3 40",
"No305 NTTCGAAAAACACACCCACTACTAAAANTTATCAGTCACT",
"No304 ATTCGAAAAACACACCCACTACTAAAAATTATCAACCACT",
"No306 ATTCGAAAAACACACCCACTACTAAAAATTATCAATCACT",
file = "exdna.txt", sep = "\n")
ex.dna <- read.dna("exdna.txt", format = "sequential")
str(ex.dna)
ex.dna
the same data in interleaved format...
cat("3 40",
"No305 NTTCGAAAAA CACACCCACT",
"No304 ATTCGAAAAA CACACCCACT",
"No306 ATTCGAAAAA CACACCCACT",
" ACTAAAANTT ATCAGTCACT",
" ACTAAAAATT ATCAACCACT",
" ACTAAAAATT ATCAATCACT",
file = "exdna.txt", sep = "\n")
ex.dna2 <- read.dna("exdna.txt")
... and in FASTA format
cat("> No305",
"NTTCGAAAAACACACCCACTACTAAAANTTATCAGTCACT",
"> No304",
"ATTCGAAAAACACACCCACTACTAAAAATTATCAACCACT",
"> No306",
"ATTCGAAAAACACACCCACTACTAAAAATTATCAATCACT",
file = "exdna.txt", sep = "\n")
ex.dna3 <- read.dna("exdna.txt", format = "fasta")
These are the same!
identical(ex.dna, ex.dna2)
identical(ex.dna, ex.dna3)
unlink("exdna.txt") # clean-up

read.nexus Read Tree File in Nexus Format

Description

This function reads one or several trees in a NEXUS file.

Usage

read.nexus(file, tree.names = NULL)

128 read.nexus

Arguments

file a file name specified by either a variable of mode character, or a double-quoted
string.

tree.names if there are several trees to be read, a vector of mode character that gives names
to the individual trees; if NULL (the default), the trees are named "tree1",
"tree2", ...

Details

The present implementation tries to follow as much as possible the NEXUS standard. Only the
block “TREES” is read; the other data can be read with other functions (e.g., read.dna, read.table,
...). A trace of the original data is kept with the attribute "origin" (see below).

‘read.nexus’ tries to represent correctly trees with a badly represented root edge (i.e. with an extra
pair of parentheses). For instance, the tree "((A:1,B:1):10);" will be read like "(A:1,B:1):10;" but a
warning message will be issued in the former case as this is apparently not a valid Newick format. If
there are two root edges (e.g., "(((A:1,B:1):10):10);"), then the tree is not read and an error message
is issued.

Value

an object of class "phylo" with the following components:

edge a two-column matrix of mode character where each row represents an edge of
the tree; the nodes and the tips are symbolized with numbers (these numbers
are not treated as numeric, hence the mode character); the nodes are represented
with negative numbers (the root being "-1"), and the tips are represented with
positive numbers. For each row, the first column gives the ancestor. This repre-
sentation allows an easy manipulation of the tree, particularly if it is rooted.

edge.length a numeric vector giving the lengths of the branches given by edge.

tip.label a vector of mode character giving the names of the tips; the order of the names
in this vector corresponds to the (positive) number in edge.

node.label (optional) a vector of mode character giving the names of the nodes (set to NULL
if not available in the file).

root.edge (optional) a numeric value giving the length of the branch at the root is it exists
(NULL otherwise).

If several trees are read in the file, the returned object is of class "multiPhylo", and is a list of
objects of class "phylo".

An attribute "origin" is further given to the returned object which gives the name of the source
file (with its path). This is used to write a tree in a NEXUS file where all the original data must be
written (not only the tree) in accordance to the specifications of Maddison et al. (1997).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

read.nexus.data 129

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997) NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590–621.

See Also

read.tree, write.nexus, write.tree, read.nexus.data, write.nexus.data

read.nexus.data Read Character Data In NEXUS Format

Description

This function reads a file with sequences in the NEXUS format.

Usage

read.nexus.data(file)

Arguments

file a file name specified by either a variable of mode character, or a double-quoted
string.

Details

This parser tries to read data from a file written in a restricted NEXUS format (see examples below).

Please see files ‘data.nex’ and ‘taxacharacters.nex’ for examples of formats that will work.

Some noticeable exceptions from the NEXUS standard (non-exhaustive list):

I Comments must be either on separate lines or at the end of lines. Examples:\ [Comment] —
OK\ Taxon ACGTACG [Comment] — OK\ [Comment line 1

Comment line 2]— NOT OK!\ Tax[Comment]on ACG[Comment]T— NOT OK!

II No spaces (or comments) are allowed in the sequences. Examples:\ name ACGT — OK\
name AC GT — NOT OK!

III No spaces are allowed in taxon names, not even if names are in single quotes. That is, single-
quoted names are not treated as such by the parser. Examples:\ Genus_species — OK\
’Genus_species’ — OK\ ’Genus species’ — NOT OK!

IV The trailing end that closes the matrix must be on a separate line. Examples:\ taxon
AACCGGT

end; — OK\ taxon AACCGGT;

end; — OK\ taxon AACCCGT; end; — NOT OK!

130 read.nexus.data

V Multistate characters are not allowed. That is, NEXUS allows you to specify multiple charac-
ter states at a character position either as an uncertainty, (XY), or as an actual appearance of
multiple states, {XY}. This is information is not handled by the parser. Examples:\ taxon
0011?110 — OK\ taxon 0011{01}110 — NOT OK!\ taxon 0011(01)110 —
NOT OK!

VI The number of taxa must be on the same line as ntax. The same applies to nchar. Exam-
ples:\ ntax = 12 — OK\ ntax =

12 — NOT OK!

VII The word “matrix” can not occur anywhere in the file before the actual matrix command,
unless it is in a comment. Examples:\ BEGIN CHARACTERS;

TITLE ’Data in file "03a-cytochromeB.nex"’;

DIMENSIONS NCHAR=382;

FORMAT DATATYPE=Protein GAP=- MISSING=?;

["This is The Matrix"] — OK
MATRIX\
BEGIN CHARACTERS;

TITLE ’Matrix in file "03a-cytochromeB.nex"’; — NOT OK!
DIMENSIONS NCHAR=382;

FORMAT DATATYPE=Protein GAP=- MISSING=?;

MATRIX

Value

A list of sequences each made of a single vector of mode character where each element is a (phylo-
genetic) character state.

Author(s)

Johan Nylander 〈nylander@scs.fsu.edu〉

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997) NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590–621.

See Also

read.nexus, write.nexus, write.nexus.data

Examples

Use read.nexus.data to read a file in NEXUS format into object x
Not run: x <- read.nexus.data("file.nex")

read.tree 131

read.tree Read Tree File in Parenthetic Format

Description

This function reads a file which contains one or several trees in parenthetic format known as the
Newick or New Hampshire format.

Usage

read.tree(file = "", text = NULL, tree.names = NULL,
skip = 0, comment.char = "#", ...)

Arguments

file a file name specified by either a variable of mode character, or a double-quoted
string; if file = "" (the default) then the tree is input on the keyboard, the
entry being terminated with a blank line.

text alternatively, the name of a variable of mode character which contains the tree(s)
in parenthetic format. By default, this is ignored (set to NULL, meaning that the
tree is read in a file); if text is not NULL, then the argument file is ignored.

tree.names if there are several trees to be read, a vector of mode character that gives names
to the individual trees; if NULL (the default), the trees are named "tree1",
"tree2", ...

skip the number of lines of the input file to skip before beginning to read data (this is
passed directly to scan()).

comment.char a single character, the remaining of the line after this character is ignored (this
is passed directly to scan()).

... Further arguments to be passed to scan().

Details

The default option for file allows to type directly the tree on the keyboard (or possibly to copy
from an editor and paste in R’s console) with, e.g., mytree <- read.tree().

‘read.tree’ tries to represent correctly trees with a badly represented root edge (i.e. with an extra
pair of parentheses). For instance, the tree "((A:1,B:1):10);" will be read like "(A:1,B:1):10;" but a
warning message will be issued in the former case as this is apparently not a valid Newick format. If
there are two root edges (e.g., "(((A:1,B:1):10):10);"), then the tree is not read and an error message
is issued.

Value

an object of class "phylo" with the following components:

132 read.tree

edge a two-column matrix of mode numeric where each row represents an edge of the
tree; the nodes and the tips are symbolized with numbers; the tips are numbered
1, 2, . . . , and the nodes are numbered after the tips. For each row, the first
column gives the ancestor.

edge.length (optional) a numeric vector giving the lengths of the branches given by edge.

tip.label a vector of mode character giving the names of the tips; the order of the names
in this vector corresponds to the (positive) number in edge.

Nnode the number of (internal) nodes.

node.label (optional) a vector of mode character giving the names of the nodes.

root.edge (optional) a numeric value giving the length of the branch at the root if it exists.

If several trees are read in the file, the returned object is of class "multiPhylo", and is a list of
objects of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Felsenstein, J. The Newick tree format. http://evolution.genetics.washington.
edu/phylip/newicktree.html

Olsen, G. Interpretation of the "Newick’s 8:45" tree format standard. http://evolution.
genetics.washington.edu/phylip/newick_doc.html

Paradis, E. (2006) Definition of Formats for Coding Phylogenetic Trees in R. http://ape.mpl.
ird.fr/misc/FormatTreeR_4Dec2006.pdf

See Also

write.tree, read.nexus, write.nexus, scan for the basic R function to read data in a
file

Examples

An extract from Sibley and Ahlquist (1990)
cat("(((Strix_aluco:4.2,Asio_otus:4.2):3.1,",

"Athene_noctua:7.3):6.3,Tyto_alba:13.5);",
file = "ex.tre", sep = "\n")

tree.owls <- read.tree("ex.tre")
str(tree.owls)
tree.owls
unlink("ex.tre") # delete the file "ex.tre"
Only the first three species using the option `text'
TREE <- "((Strix_aluco:4.2,Asio_otus:4.2):3.1,Athene_noctua:7.3);"
TREE
tree.owls.bis <- read.tree(text = TREE)
str(tree.owls.bis)
tree.owls.bis

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://ape.mpl.ird.fr/misc/FormatTreeR_4Dec2006.pdf
http://ape.mpl.ird.fr/misc/FormatTreeR_4Dec2006.pdf

reorder.phylo 133

reorder.phylo Internal Reordering of Trees

Description

This function changes the internal structure of a phylogeny stored as an object of class "phylo".
The tree returned is the same than the one input, but the ordering of the edges could be different.

Usage

S3 method for class 'phylo':
reorder(x, order = "cladewise", ...)

Arguments

x an object of class "phylo".

order a character string: either "cladewise" (the default), or "pruningwise",
or any unambiguous abbreviation of these.

... further arguments passed to or from other methods.

Details

Because in a tree coded as an object of class "phylo" each branch is represented by a row in the
element ‘edge’, there is an arbitrary choice for the ordering of these rows. reorder allows to
reorder these rows according to two rules: in the "cladewise" order each clade is formed by
a series of contiguous rows; this is the order returned by read.tree. In the "pruningwise"
order, rows are arranged so that “pruning” the tree (or post-order tree traversal) can be done by
descending along the rows of ‘edge’. The possible multichotomies and branch lengths are preserved.

Value

an object of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.tree to read tree files in Newick format, reorder for the generic function

Examples

data(bird.families)
tr <- reorder(bird.families, "p")
all.equal(bird.families, tr) # uses all.equal.phylo actually
all.equal.list(bird.families, tr) # bypasses the generic

134 root

root Roots Phylogenetic Trees

Description

root reroots a phylogenetic tree with respect to the specified outgroup or at the node specified in
node.

unroot unroots a phylogenetic tree, or returns it unchanged if it is already unrooted.

is.rooted tests whether a tree is rooted.

Usage

root(phy, outgroup, node = NULL, resolve.root = FALSE)
unroot(phy)
is.rooted(phy)

Arguments

phy an object of class "phylo".

outgroup a vector of mode numeric or character specifying the new outgroup.

node alternatively, a node number where to root the tree.

resolve.root a logical specifying whether to resolve the new root as a bifurcating node.

Details

The argument outgroup can be either character or numeric. In the first case, it gives the la-
bels of the tips of the new outgroup; in the second case the numbers of these labels in the vector
phy$tip.label are given.

If outgroup is of length one (i.e., a single value), then the tree is rerooted using the node below
this tip as the new root.

If outgroup is of length two or more, the most recent common ancestor (MRCA) is used as
the new root. Note that the tree is really unrooted before being rerooted, so that if outgroup is
already the outgroup, then the returned tree is not the same than the original one (see examples). If
outgroup is not monophyletic, the operation fails and an error message is issued.

If resolve.root = TRUE, root adds a zero-length branch below the MRCA of the ingroup.

A tree is considered rooted if either only two branches connect to the root, or if there is a root.edge
element. In all other cases, is.rooted returns FALSE.

Value

an object of class "phylo" for root and unroot; a single logical value for is.rooted.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

rotate 135

See Also

bind.tree, drop.tip, nodelabels, identify.phylo

Examples

data(bird.orders)
plot(root(bird.orders, 1))
plot(root(bird.orders, 1:5))

tr <- root(bird.orders, 1)
is.rooted(bird.orders) # yes!
is.rooted(tr) # no!
This is because the tree has been unrooted first before rerooting.
You can delete the outgroup...
is.rooted(drop.tip(tr, "Struthioniformes"))
... or resolve the basal trichotomy in two ways:
is.rooted(multi2di(tr))
is.rooted(root(bird.orders, 1, r = TRUE))
To keep the basal trichotomy but forcing the tree as rooted:
tr$root.edge <- 0
is.rooted(tr)

rotate Swopping sister clades

Description

For a given node, rotate exchanges the position of two clades descending from this node. It can
handle dichotomies as well as polytomies. In the latter case, two clades from the polytomy are
selected for swapping.

Usage

rotate(phy, node, polytom = c(1, 2))

Arguments

phy an object of class "phylo".

node a vector of mode numeric or character specifying the number of the node

polytom a vector of mode numeric and length two specifying the two clades that should
be exchanged in a polytomy

136 rotate

Details

phy can be either rooted or unrooted, contain polytomies and lack branch lengths. In the presence
of very short branch lengths it is convenient to plot the phylogenetic tree without branch lengths in
order to identify the number of the node in question.

node can be any of the interior nodes of a phylogenetic tree including the root node. Number of the
nodes can be identified by the nodelabels function. Alternatively, you can specify a vector of length
two that contains either the number or the names of two tips that coalesce in the node of interest.

If the node subtends a polytomy, any two clades of the the polytomy can be chosen by polytom. On
a plotted phylogeny, the clades are numbered from bottom to top and polytom is used to index the
two clades one likes to swop.

Value

an object of class "phylo".

Author(s)

Christoph Heibl 〈heibl@lmu.de〉

See Also

plot.phylo, nodelabels, root, drop.tip

Examples

create a random tree:
tre <- rtree(25)

visualize labels of internal nodes:
plot.phylo(tre, use.edge.length=FALSE)
nodelabels()

rotate clades around node 30:
tre.new <- rotate(tre, 30)

compare the results:
X11() # open new graphical device
par(mfrow=c(1,2)) # devide graphical device
plot(tre) # plot old tre
plot(tre.new) # plot new tree

visualize labels of terminal nodes:
X11() # open new graphical device
plot.phylo(tre)
tiplabels()

rotate clades containing nodes 12 and 20:
tre.new <- rotate(tre, c(12, 21))

compare the results:

rtree 137

X11() # open new graphical device
par(mfrow=c(1,2)) # devide graphical device
plot(tre) # plot old tre
plot(tre.new) # plot new tree

or you migth just specify tiplabel names:
tre.new <- rotate(tre, c("t3", "t14"))

compare the results:
X11() # open new graphical device
par(mfrow=c(1,2)) # devide graphical device
plot(tre) # plot old tre
plot(tre.new) # plot new tree

rtree Generates Random Trees

Description

These functions generate trees by splitting randomly the edges (rtree) or randomly clustering the
tips (rcoal). rtree generates general (non-ultrametric) trees, and rcoal generates coalescent
(ultrametric) trees.

Usage

rtree(n, rooted = TRUE, tip.label = NULL, br = runif, ...)
rcoal(n, tip.label = NULL, br = "coalescent", ...)
rmtree(N, n, rooted = TRUE, tip.label = NULL, br = runif, ...)

Arguments

n an integer giving the number of tips in the tree.
rooted a logical indicating whether the tree should be rooted (the default).
tip.label a character vector giving the tip labels; if not specified, the tips "t1", "t2", ..., are

given.
br either an R function used to generate the branch lengths (rtree or NULL to

give no branch lengths) or the coalescence times (rcoal). For the latter, a
genuine coalescent tree is simulated by default.

... further argument(s) to be passed to br.
N an integer giving the number of trees to generate.

Details

The trees generated are bifurcating. If rooted = FALSE in (rtree), the tree is trifurcating at
its root.

The default function to generate branch lengths in rtree is runif. If further arguments are
passed to br, they need to be tagged (e.g., min = 0, max = 10).

rmtree calls successively rtree and set the class of the returned object appropriately.

138 seg.sites

Value

An object of class "phylo" or of class "multiPhylo" in the case of rmtree.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

Examples

layout(matrix(1:9, 3, 3))
Nine random trees:
for (i in 1:9) plot(rtree(20))
Nine random cladograms:
for (i in 1:9) plot(rtree(20, FALSE), type = "c")
generate 4 random trees of bird orders:
data(bird.orders)
layout(matrix(1:4, 2, 2))
for (i in 1:4)
plot(rcoal(23, tip.label = bird.orders$tip.label), no.margin = TRUE)

layout(matrix(1))

seg.sites Find Segregating Sites in DNA Sequences

Description

This function gives the indices of segregating (polymorphic) sites in a sample of DNA sequences.

Usage

seg.sites(x)

Arguments

x a matrix or a list which contains the DNA sequences.

Details

If the sequences are in a list, all the sequences must be of the same length.

Value

A numeric vector giving the indices of the segregating sites.

Note

The present version looks for the sites which are “variable” in the data in terms of different letters.
This may give unexpected results if there are ambiguous bases in the data.

sh.test 139

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

base.freq, GC.content, theta.s, nuc.div

Examples

data(woodmouse)
y <- seg.sites(woodmouse)
y
length(y)

sh.test Shimodaira-Hasegawa Test

Description

This function computes the Shimodaira–Hasegawa test for a set of trees.

Usage

sh.test(..., x, model = DNAmodel(), B = 100)

Arguments

... either a series of objects of class "phylo" separated by commas, or a list con-
taining such objects.

x a list, a matrix, or a data frame containing the (aligned) DNA sequences.

model the model to be fitted to each tree (as an object of "DNAmodel").

B the number of bootstrap replicates.

Details

The present implementation follows the original formulation of Shimodaira and Hasegawa (1999).
A difference is that the bootstrap resampling is done on the original sequence data rather than the
RELL method as sugested by Shimodaira and Hasegawa.

Value

a numeric vector with the P-value associated with each tree given in

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

140 skyline

References

Shimodaira, H. and Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications
to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.

See Also

mlphylo, DNAmodel

Examples

data(woodmouse)
t1 <- nj(dist.dna(woodmouse))
t2 <- rtree(15, tip.label = t1$tip.label)
t3 <- rtree(15, tip.label = t1$tip.label)
Are the NJ tree and two random tress significantly different?
Not run: sh.test(t1, t2, t3, x = woodmouse, B = 100)

skyline Skyline Plot Estimate of Effective Population Size

Description

skyline computes the generalized skyline plot estimate of effective population size from an es-
timated phylogeny. The demographic history is approximated by a step-function. The number of
parameters of the skyline plot (i.e. its smoothness) is controlled by a parameter epsilon.

find.skyline.epsilon searches for an optimal value of the epsilon parameter, i.e. the
value that maximizes the AICc-corrected log-likelihood (logL.AICc).

Usage

skyline(x, ...)
S3 method for class 'phylo':
skyline(x, ...)
S3 method for class 'coalescentIntervals':
skyline(x, epsilon=0, ...)
S3 method for class 'collapsedIntervals':
skyline(x, old.style=FALSE, ...)
find.skyline.epsilon(ci, GRID=1000, MINEPS=1e-6, ...)

Arguments

x Either an ultrametric tree (i.e. an object of class "phylo"), or coalescent in-
tervals (i.e. an object of class "coalescentIntervals"), or collapsed co-
alescent intervals (i.e. an object of class "collapsedIntervals").

epsilon collapsing parameter that controls the amount of smoothing (allowed range:
from 0 to ci$total.depth, default value: 0). This is the same parameter as
in collapsed.intervals.

skyline 141

old.style Parameter to choose between two slightly different variants of the generalized
skyline plot (Strimmer and Pybus, pers. comm.). The default value FALSE is
recommended.

ci coalescent intervals (i.e. an object of class "coalescentIntervals")

GRID Parameter for the grid search for epsilon in find.skyline.epsilon.

MINEPS Parameter for the grid search for epsilon in find.skyline.epsilon.

... Any of the above parameters.

Details

skyline implements the generalized skyline plot introduced in Strimmer and Pybus (2001). For
epsilon = 0 the generalized skyline plot degenerates to the classic skyline plot described in
Pybus et al. (2000). The latter is in turn directly related to lineage-through-time plots (Nee et al.,
1995).

Value

skyline returns an object of class "skyline" with the following entries:

time A vector with the time at the end of each coalescent interval (i.e. the accumu-
lated interval lengths from the beginning of the first interval to the end of an
interval)

interval.length
A vector with the length of each interval.

population.size
A vector with the effective population size of each interval.

parameter.count
Number of free parameters in the skyline plot.

epsilon The value of the underlying smoothing parameter.

logL Log-likelihood of skyline plot (see Strimmer and Pybus, 2001).

logL.AICc AICc corrected log-likelihood (see Strimmer and Pybus, 2001).

find.skyline.epsilon returns the value of the epsilon parameter that maximizes logL.AICc.

Author(s)

Korbinian Strimmer (http://www.stat.uni-muenchen.de/~strimmer/)

References

Strimmer, K. and Pybus, O. G. (2001) Exploring the demographic history of DNA sequences using
the generalized skyline plot. Molecular Biology and Evolution, 18, 2298–2305.

Pybus, O. G, Rambaut, A. and Harvey, P. H. (2000) An integrated framework for the inference of
viral population history from reconstructed genealogies. Genetics, 155, 1429–1437.

Nee, S., Holmes, E. C., Rambaut, A. and Harvey, P. H. (1995) Inferring population history from
molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B.
Biological Sciences, 349, 25–31.

http://www.stat.uni-muenchen.de/~strimmer/

142 skylineplot

See Also

coalescent.intervals, collapsed.intervals, skylineplot, ltt.plot.

Examples

get tree
data("hivtree.newick") # example tree in NH format
tree.hiv <- read.tree(text = hivtree.newick) # load tree

corresponding coalescent intervals
ci <- coalescent.intervals(tree.hiv) # from tree

collapsed intervals
cl1 <- collapsed.intervals(ci,0)
cl2 <- collapsed.intervals(ci,0.0119)

classic skyline plot
sk1 <- skyline(cl1) # from collapsed intervals
sk1 <- skyline(ci) # from coalescent intervals
sk1 <- skyline(tree.hiv) # from tree
sk1

plot(skyline(tree.hiv))
skylineplot(tree.hiv) # shortcut

plot(sk1, show.years=TRUE, subst.rate=0.0023, present.year = 1997)

generalized skyline plot

sk2 <- skyline(cl2) # from collapsed intervals
sk2 <- skyline(ci, 0.0119) # from coalescent intervals
sk2 <- skyline(tree.hiv, 0.0119) # from tree
sk2

plot(sk2)

classic and generalized skyline plot together in one plot
plot(sk1, show.years=TRUE, subst.rate=0.0023, present.year = 1997, col=c(grey(.8),1))
lines(sk2, show.years=TRUE, subst.rate=0.0023, present.year = 1997)
legend(.15,500, c("classic", "generalized"), col=c(grey(.8),1),lty=1)

find optimal epsilon parameter using AICc criterion
find.skyline.epsilon(ci)

sk3 <- skyline(ci, -1) # negative epsilon also triggers estimation of epsilon
sk3$epsilon

skylineplot Drawing Skyline Plot Graphs

skylineplot 143

Description

These functions provide various ways to draw skyline plot graphs on the current graphical device.
Note that skylineplot(z, ...) is simply a shortcut for plot(skyline(z, ...)). The
skyline plot itself is an estimate of effective population size through time, and is computed using
the function skyline.

Usage

S3 method for class 'skyline':
plot(x, show.years=FALSE, subst.rate, present.year, ...)
S3 method for class 'skyline':
lines(x, show.years=FALSE, subst.rate, present.year, ...)
skylineplot(z, ...)
skylineplot.deluxe(tree, ...)

Arguments

x skyline plot data (i.e. an object of class "skyline").

z Either an ultrametric tree (i.e. an object of class "phylo"), or coalescent in-
tervals (i.e. an object of class "coalescentIntervals"), or collapsed co-
alescent intervals (i.e. an object of class "collapsedIntervals").

tree ultrametric tree (i.e. an object of class "phylo").

show.years option that determines whether the time is plotted in units of of substitutions (de-
fault) or in years (requires specification of substution rate and year of present).

subst.rate substitution rate (see option show.years).

present.year present year (see option show.years).

... further arguments to be passed on to skyline() and plot().

Details

See skyline for more details (incl. references) about the skyline plot method.

Author(s)

Korbinian Strimmer (http://www.stat.uni-muenchen.de/~strimmer/)

See Also

plot and lines for the basic plotting function in R, coalescent.intervals, skyline

Examples

get tree
data("hivtree.newick") # example tree in NH format
tree.hiv <- read.tree(text = hivtree.newick) # load tree

classic skyline plot
skylineplot(tree.hiv) # shortcut

http://www.stat.uni-muenchen.de/~strimmer/

144 subtreeplot

plot classic and generalized skyline plots and estimate epsilon
sk.opt <- skylineplot.deluxe(tree.hiv)
sk.opt$epsilon

classic and generalized skyline plot
sk1 <- skyline(tree.hiv)
sk2 <- skyline(tree.hiv, 0.0119)

use years rather than substitutions as unit for the time axis
plot(sk1, show.years=TRUE, subst.rate=0.0023, present.year = 1997, col=c(grey(.8),1))
lines(sk2, show.years=TRUE, subst.rate=0.0023, present.year = 1997)
legend(.15,500, c("classic", "generalized"), col=c(grey(.8),1),lty=1)

various skyline plots for different epsilons
layout(mat= matrix(1:6,2,3,byrow=TRUE))
ci <- coalescent.intervals(tree.hiv)
plot(skyline(ci, 0.0));title(main="0.0")
plot(skyline(ci, 0.007));title(main="0.007")
plot(skyline(ci, 0.0119),col=4);title(main="0.0119")
plot(skyline(ci, 0.02));title(main="0.02")
plot(skyline(ci, 0.05));title(main="0.05")
plot(skyline(ci, 0.1));title(main="0.1")
layout(mat= matrix(1:1,1,1,byrow=TRUE))

subtreeplot Zoom on a Portion of a Phylogeny by Successive Clicks

Description

This function plots simultaneously a whole phylogenetic tree (supposedly large) and a portion of it
determined by clicking on the nodes of the phylogeny. On exit, returns the last subtree visualized.

Usage

subtreeplot(x, wait=FALSE, ...)

Arguments

x an object of class "phylo".

wait a logical indicating whether the node beeing processed should be printed (useful
for big phylogenies).

... further arguments passed to plot.phylo.

subtrees 145

Details

This function aims at easily exploring very large trees. The main argument is a phylogenetic tree,
and the second one is a logical indicating whether a waiting message should be printed while the
calculation is being processed.

The whole tree is plotted on the left-hand side in half of the device. The subtree is plotted on the
right-hand side in the other half. The user clicks on the nodes in the complete tree and the subtree
corresponding to this node is ploted in the right-hand side. There is no limit for the number of clicks
that can be done. On exit, the subtree on the right hand side is returned.

To use a subtree as the new tree in which to zoom, the user has to use the function many times. This
can however be done in a single command line (see example 2).

Author(s)

Damien de Vienne 〈damien.de-vienne@u-psud.fr〉

See Also

plot.phylo, drop.tip, subtrees

Examples

Not run:
#example 1: simple
tree1<-rtree(50) #random tree with 50 leaves
tree2<-subtreeplot(tree1, wait=TRUE) # on exit, tree2 will be a subtree of tree1.

#example 2: more than one zoom
tree1<-rtree(60)
tree2<-subtreeplot(subtreeplot(subtreeplot(tree1))) #allows three succssive zooms.
End(Not run)

subtrees All subtrees of a Phylogenetic Tree

Description

This function returns a list of all the subtrees of a phylogenetic tree.

Usage

subtrees(tree, wait=FALSE)

Arguments

tree an object of class "phylo".

wait a logical indicating whether the node beeing processed should be printed (useful
for big phylogenies).

146 summary.phylo

Value

subtrees returns a list of trees of class "phylo" and returns invisibly for each subtree a list
with the following components:

tip.label

node.label

Ntip

Nnode

Author(s)

Damien de Vienne 〈damien.de-vienne@u-psud.fr〉

See Also

zoom, subtreeplot for functions extracting particular subtrees.

Examples

Random tree with 12 leaves
phy<-rtree(12)
par(mfrow=c(4,3))
plot(phy, sub="Complete tree")

Extract the subtrees
l<-subtrees(phy)

plot all the subtrees
for (i in 1:11) plot(l[[i]], sub=paste("Node", l[[i]]$node.label[1]))
par(mfrow=c(1,1))

summary.phylo Print Summary of a Phylogeny

Description

The first function prints a compact summary of a phylogenetic tree (an object of class "phylo").
The three other functions return the number of tips, nodes, or edges, respectively.

Usage

S3 method for class 'phylo':
summary(object, ...)
Ntip(phy)
Nnode(phy, internal.only = TRUE)
Nedge(phy)

theta.h 147

Arguments

object, phy an object of class "phylo".

... further arguments passed to or from other methods.
internal.only

a logical indicating whether to return the number of internal nodes only (the
default), or of internal and terminal (tips) nodes (if FALSE).

Details

The summary includes the numbers of tips and of nodes, summary statistics of the branch lengths
(if they are available) with mean, variance, minimum, first quartile, median, third quartile, and
maximum, listing of the first ten tip labels, and (if available) of the first ten node labels. It is also
printed whether some of these optional elements (branch lengths, node labels, and root edge) are
not found in the tree.

If the tree was estimated by maximum likelihood with mlphylo, a summary of the model fit and
the parameter estimated is printed.

summary simply prints its results on the standard output and is not meant for programming.

Value

A NULL value in the case of summary, a single numeric value for the three other functions.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

read.tree, summary for the generic R function

Examples

data(bird.families)
summary(bird.families)
Ntip(bird.families)
Nnode(bird.families)
Nedge(bird.families)

theta.h Population Parameter THETA using Homozygosity

Description

This function computes the population parameter THETA using the homozygosity (or mean het-
erozygosity) from gene frequencies.

148 theta.k

Usage

theta.h(x, standard.error = FALSE)

Arguments

x a vector or a factor.
standard.error

a logical indicating whether the standard error of the estimated theta should be
returned (TRUE), the default being FALSE.

Details

The argument x can be either a factor or a vector. If it is a factor, then it is taken to give the
individual alleles in the population. If it is a numeric vector, then its values are taken to be the
numbers of each allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

The standard error is computed with an approximation due to Chakraborty and Weiss (1991).

Value

a numeric vector of length one with the estimated theta (the default), or of length two if the standard
error is returned (standard.error = TRUE).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Zouros, E. (1979) Mutation rates, population sizes and amounts of electrophoretic variation at en-
zyme loci in natural populations. Genetics, 92, 623–646.

Chakraborty, R. and Weiss, K. M. (1991) Genetic variation of the mitochondrial DNA genome
in American Indians is at mutation-drift equilibrium. American Journal of Human Genetics, 86,
497–506.

See Also

heterozygosity, theta.s, theta.k

theta.k Population Parameter THETA using Expected Number of Alleles

Description

This function computes the population parameter THETA using the expected number of alleles.

Usage

theta.k(x, n = NULL, k = NULL)

theta.s 149

Arguments

x a vector or a factor.

n a numeric giving the sample size.

k a numeric giving the number of alleles.

Details

This function can be used in two ways: either with a vector giving the individual genotypes from
which the sample size and number of alleles are derived (theta.k(x)), or giving directly these
two quantities (theta.k(n, k)).

The argument x can be either a factor or a vector. If it is a factor, then it is taken to give the
individual alleles in the population. If it is a numeric vector, then its values are taken to be the
numbers of each allele in the population. If it is a non-numeric vector, it is a coerced as a factor.

Both arguments n and k must be single numeric values.

Value

a numeric vector of length one with the estimated theta.

Note

For the moment, no standard-error or confidence interval is computed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theoretical Population
Biology, 3, 87–112.

See Also

theta.h, theta.s

theta.s Population Parameter THETA using Segregating Sites in DNA Se-
quences

Description

This function computes the population parameter THETA using the number of segregating sites s
in a sample of n DNA sequences.

150 theta.s

Usage

theta.s(s, n, variance = FALSE)

Arguments

s a numeric giving the number of segregating sites.

n a numeric giving the number of sequences.

variance a logical indicating whether the variance of the estimated THETA should be
returned (TRUE), the default being FALSE.

Value

a numeric vector of length one with the estimated theta (the default), or of length two if the standard
error is returned (variance = TRUE).

Note

The number of segregating sites needs to be computed beforehand, for instance with the function
seg.sites (see example below).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Watterson, G. (1975) On the number of segragating sites in genetical models without recombination.
Theoretical Population Biology, 7, 256–276.

Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism. Genetics, 123, 585–595.

See Also

theta.h, theta.k, seg.sites, nuc.div

Examples

data(woodmouse)
y <- seg.sites(woodmouse)
s <- length(y)
n <- length(woodmouse)
theta.s(s, n)
theta.s(s, n, variance = TRUE)

unique.multiPhylo 151

unique.multiPhylo Revomes Duplicate Trees

Description

This function scans a list of trees, and returns a list with the duplicate trees removed. By default the
labelled topologies are compared.

Usage

S3 method for class 'multiPhylo':
unique(x, incomparables = FALSE,

use.edge.length = FALSE,
use.tip.label = TRUE, ...)

Arguments

x an object of class "multiPhylo".
incomparables

unused (for compatibility with the generic).
use.edge.length

a logical specifying whether to consider the edge lengths in the comparisons;
the default is FALSE.

use.tip.label
a logical specifying whether to consider the tip labels in the comparisons; the
default is TRUE.

... further arguments passed to or from other methods.

Value

an object of class "multiPhylo" which is a list of objects of class "phylo".

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

all.equal.phylo, unique for the generic R function, read.tree, read.nexus

Examples

TR <- rmtree(50, 4)
length(unique(TR)) # not always 15...
howmanytrees(4)

152 varcomp

varcomp Compute Variance Component Estimates

Description

Get variance component estimates from a fitted lme object.

Usage

varcomp(x, scale = FALSE, cum = FALSE)

Arguments

x A fitted lme object

scale Scale all variance so that they sum to 1

cum Send cumulative variance components.

Details

Variance computations is done as in Venables and Ripley’s book.

Value

A named vector of class varcomp with estimated variance components.

Author(s)

Julien Dutheil 〈julien.dutheil@univ-montp2.fr〉

References

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S (fourth edition). New
York: Springer-Verlag.

See Also

lme

Examples

data(carnivora)
m <- lme(log10(SW) ~ 1, random = ~ 1|Order/SuperFamily/Family/Genus, data=carnivora)
v <- varcomp(m, TRUE, TRUE)
plot(v)

vcv.phylo 153

vcv.phylo Phylogenetic Variance-covariance or Correlation Matrix

Description

This function computes the expected variances and covariances of a continuous phenotype assuming
it evolves under a given model (currently only the model of Brownian motion is available).

Usage

vcv.phylo(phy, model = "Brownian", cor = FALSE)

Arguments

phy an object of class "phylo".

model a character giving the model used to compute the variances and covariances of
the phynotype; by default "Brownian". Currently only the Brownian model
is available.

cor a logical indicating whether the correlation matrix should be returned (TRUE);
by default the variance-covariance matrix is returned (FALSE).

Value

a numeric matrix with the names of the tips (as given by the tip.label of the argument phy) as
colnames and rownames.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Garland, T. Jr. and Ives, A. R. (2000) Using the past to predict the present: confidence intervals for
regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–364.

See Also

read.tree to read tree files in Newick format

154 which.edge

weight.taxo Define Similarity Matrix

Description

weight.taxo computes a matrix whose entries [i, j] are set to 1 if x[i] == x[j], 0 otherwise.

weight.taxo2 computes a matrix whose entries [i, j] are set to 1 if x[i] == x[j] AND y[i] != y[j],
0 otherwise.

The diagonal [i, i] is always set to 0.

This returned matrix can be used as a weight matrix in Moran.I. x and ymay be vectors of factors.

See further details in vignette("MoranI").

Usage

weight.taxo(x)
weight.taxo2(x, y)

Arguments

x, y a vector or a factor.

Value

a square numeric matrix.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

Moran.I, correlogram.formula

which.edge Identifies Edges of a Tree

Description

This function identifies the edges that belong to a group (possibly non-monophyletic) specified as a
set of tips.

Usage

which.edge(phy, group)

woodmouse 155

Arguments

phy an object of class "phylo".

group a vector of mode numeric or character specifying the tips for which the edges
are to be identified.

Details

The group of tips specified in ‘group’ may be non-monophyletic (paraphyletic or polyphyletic), in
which case all edges from the tips to their most recent common ancestor are identified.

The identification is made with the indices of the rows of the matrix ‘edge’ of the "phylo" object.

Value

a numeric vector.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

bind.tree, drop.tip, root

woodmouse Cytochrome b Gene Sequences of Woodmice

Description

This is a set of 15 sequences of the mitochondrial gene cytochrome b of the woodmouse (Apodemus
sylvaticus) which is a subset of the data analysed by Michaux et al. (2003). The full data set is
available through GenBank (accession numbers AJ511877 to AJ511987).

Usage

data(woodmouse)

Format

The data are stored in an ASCII file using the sequential format for DNA sequences which is read
with ‘read.dna()’.

Source

Michaux, J. R., Magnanou, E., Paradis, E., Nieberding, C. and Libois, R. (2003) Mitochondrial phy-
logeography of the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Molecular
Ecology, 12, 685–697.

156 write.dna

See Also

read.dna, DNAbin, dist.dna

Examples

data(woodmouse)
str(woodmouse)

write.dna Write DNA Sequences in a File

Description

This function writes in a file a list of DNA sequences in sequential, interleaved, or FASTA format.
The names of the vectors of the list are used as taxa names.

Usage

write.dna(x, file, format = "interleaved", append = FALSE,
nbcol = 6, colsep = " ", colw = 10, indent = NULL,
blocksep = 1)

Arguments

x a list or a matrix of DNA sequences.

file a file name specified by either a variable of mode character, or a double-quoted
string.

format a character string specifying the format of the DNA sequences. Three choices
are possible: "interleaved", "sequential", or "fasta", or any un-
ambiguous abbreviation of these.

append a logical, if TRUE the data are appended to the file without erasing the data
possibly existing in the file, otherwise the file (if it exists) is overwritten (FALSE
the default).

nbcol a numeric specifying the number of columns per row (6 by default); may be
negative implying that the nucleotides are printed on a single line.

colsep a character used to separate the columns (a single space by default).

colw a numeric specifying the number of nucleotides per column (10 by default).

indent a numeric or a character specifying how the blocks of nucleotides are indented
(see details).

blocksep a numeric specifying the number of lines between the blocks of nucleotides (this
has an effect only if ‘format = "interleaved"’).

write.dna 157

Details

The same three formats are supported in the present function than in read.dna: see its help page
and the references below for a description of these formats.

If the sequences have no names, then they are given "1", "2", ... as names in the file.

With the interleaved and sequential formats, the sequences must be all of the same length; if the
taxon names are longer than 10 characters, they are truncated and a warning message is issued.

The argument ‘indent’ specifies how the rows of nucleotides are indented. In the interleaved and
sequential formats, the rows with the taxon names are never indented; the subsequent rows are
indented with 10 spaces by default (i.e. if ‘indent = NULL)’. In the FASTA format, the rows are
not indented by default. This default behaviour can be modified by specifying a value to ‘indent’:
the rows are then indented with ‘indent’ (if it is a character) or ‘indent’ spaces (if it is a numeric).
For example, specifying ‘indent = " "’ or ‘indent = 3’ will have exactly the same effect (use ‘indent
= "�"’ for a tabulation).

Value

None (invisible ‘NULL’).

Note

Specifying a negative value for ‘nbcol’ (meaning that the nucleotides are printed on a single line)
gives the same result for the interleaved and sequential formats.

The different options are intended to give flexibility in formatting the sequences. For instance, if
the sequences are very long it may be judicious to remove all the spaces beween columns ‘(colsep
= ""), in the margins (indent = 0), and between the blocks (blocksep = 0) to produce a smaller file.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Anonymous. FASTA format description. http://www.ncbi.nlm.nih.gov/BLAST/fasta.
html

Anonymous. IUPAC ambiguity codes. http://www.ncbi.nlm.nih.gov/SNP/iupac.
html

Felsenstein, J. (1993) Phylip (Phylogeny Inference Package) version 3.5c. Department of Genetics,
University of Washington. http://evolution.genetics.washington.edu/phylip/
phylip.html

See Also

read.dna, read.GenBank

http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/SNP/iupac.html
http://www.ncbi.nlm.nih.gov/SNP/iupac.html
http://evolution.genetics.washington.edu/phylip/phylip.html
http://evolution.genetics.washington.edu/phylip/phylip.html

158 write.nexus

write.nexus Write Tree File in Nexus Format

Description

This function writes trees in a file with the NEXUS format.

Usage

write.nexus(..., file = "", translate = TRUE, original.data = TRUE)

Arguments

... either (i) a single object of class "phylo", (ii) a series of such objects separated
by commas, or (iii) a list containing such objects.

file a file name specified by either a variable of mode character, or a double-quoted
string; if file = "" (the default) then the tree is written on the standard out-
put connection.

translate a logical, if TRUE (the default) a translation of the tip labels is done which are
replaced in the parenthetic representation with tokens.

original.data
a logical, if TRUE (the default) the data in the original NEXUS file are eventually
written in "file" (see below).

Details

If original.data = TRUE, the file as specified by the attribute "origin" of the first tree is
read and its data (except the trees) are written in file.

If several trees are given, they must have all the same tip labels.

If among the objects given some are not trees of class "phylo", they are simply skipped and not
written to the file.

Value

None (invisible ‘NULL’).

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997) NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590–621.

See Also

read.nexus, read.tree, write.tree, read.nexus.data, write.nexus.data

write.nexus.data 159

write.nexus.data Write Character Data In NEXUS Format

Description

This function writes in a file a list of sequences in the NEXUS format.The names of the vectors of
the list are used as taxon names.

Usage

write.nexus.data(x, file, format = "dna", datablock = TRUE,
interleaved = TRUE, charsperline = NULL,
gap = NULL, missing = NULL)

Arguments

x a list of sequences each made of a single vector of mode character where each
element is a character state (e.g. “A”, “C”, ...).

file a file name specified by either a variable of mode character, or a double-quoted
string.

format a character string specifying the format of the sequences. Two choices are pos-
sible: dna, or protein, or any unambiguous abbreviation of these. Default is
“dna”.

datablock a logical, if TRUE the data are written in a single DATA block. If FALSE data is
written in TAXA and CHARACTER blocks. Default is TRUE.

interleaved a logical, if TRUE the data is written in interleaved format with number of char-
acters per line as specified with charsperline = numerical_value. If
FALSE, data is written in sequential format. Default is TRUE.

charsperline a numeric specifying the number of characters per line when used with interleaved
= TRUE. Default is 80.

gap a character specifying the symbol for gap. Default is “-”.

missing a character specifying the symbol for missing data. Default is “?”.

Details

If the sequences have no names, then they are given “1”, “2”, ..., as names in the file.

Sequences must be all of the same length (i.e., aligned).

Default symbols for missing data and gaps can be changed by using the missing and gap com-
mands.

Please see files ‘data.nex’ and ‘taxacharacters.nex’ for examples of output formats.

Value

None (invisible ‘NULL’).

160 write.tree

Note

...

Author(s)

Johan Nylander 〈nylander@scs.fsu.edu〉

References

Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997) NEXUS: an extensible file format
for systematic information. Systematic Biology, 46, 590–621.

See Also

read.nexus,write.nexus, read.nexus.data

Examples

Not run:
Write interleaved DNA data with 100 characters per line in a DATA block
Not run: data("woodmouse")
Not run: write.nexus.data(woodmouse, file= "woodmouse.example.nex", interleaved = TRUE, charsperline = 100)
Write sequential DNA data in TAXA and CHARACTERS blocks
Not run: data("cynipids")
Not run: write.nexus.data(cynipids, file= "cynipids.example.nex", format = "protein", datablock = FALSE, interleaved = FALSE)
Not run:

write.tree Write Tree File in Parenthetic Format

Description

This function writes in a file a tree in parenthetic format using the Newick (also known as New
Hampshire) format.

Usage

write.tree(phy, file = "", append = FALSE,
digits = 10)

Arguments

phy an object of class "phylo".

file a file name specified by either a variable of mode character, or a double-quoted
string; if file = "" (the default) then the tree is written on the standard out-
put connection (i.e. the console).

xenarthra 161

append a logical, if TRUE the tree is appended to the file without erasing the data possi-
bly existing in the file, otherwise the file (if it exists) is overwritten (FALSE the
default).

digits a numeric giving the number of digits used for printing branch lengths.

Details

The node labels and the root edge length, if available, are written in the file.

Value

a vector of mode character if file = "", none (invisible ‘NULL’) otherwise.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Felsenstein, J. The Newick tree format. http://evolution.genetics.washington.
edu/phylip/newicktree.html

Olsen, G. Interpretation of the "Newick’s 8:45" tree format standard. http://evolution.
genetics.washington.edu/phylip/newick_doc.html

See Also

read.tree, read.nexus, write.nexus

xenarthra Molecular Phylogeny of Living Xenarthrans

Description

This phylogeny was inferred by maximum likelihood analysis of the nuclear gene BRCA1 (breast
cancer susceptibility, 2788 sites) sequences for 47 placental and 3 marsupial taxa.

Usage

data(xenarthra)

Format

The data are stored as an object of class "phylo" which structure is described in the help page of
the function read.tree.

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html

162 yule

Source

Delsuc, F., Scally, M., Madsen, O., Stanhope, M. J., de Jong, W. W., Catzeflis, F. M., Springer,
M. S. and Douzery, E. J. P. (2002) Molecular phylogeny of living xenarthrans and the impact of
character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution, 19,
1656–1671.

See Also

read.tree

Examples

data(xenarthra)
plot(xenarthra)
remove the margins...
plot(xenarthra, no.margin = TRUE)
... and use a smaller font size
plot(xenarthra, no.margin = TRUE, cex = 0.8)

yule Fits Yule Model to a Phylogenetic Tree

Description

This function fits by maximum likelihood a Yule model, i.e. a birth-only model to the branching
times computed from a phylogenetic tree.

Usage

yule(phy, use.root.edge = FALSE)

Arguments

phy an object of class "phylo".
use.root.edge

a logical specifying whether to consider the root edge in the calculations.

Details

The tree must be fully dichotomous.

The maximum likelihood estimate of the speciation rate is obtained by the ratio of the number
of speciation events on the cumulative number of species through time; these two quantities are
obtained with the number of nodes in the tree, and the sum of the branch lengths, respectively.

If there is a ‘root.edge’ element in the phylogenetic tree, and use.root.edge = TRUE, then it
is assumed that it has a biological meaning and is counted as a branch length, and the root is counted
as a speciation event; otherwise the number of speciation events is the number of nodes - 1.

The standard-error of lambda is computed with the second derivative of the log-likelihood function.

yule.cov 163

Value

An object of class "yule" which is a list with the following components:

lambda the maximum likelihood estimate of the speciation (birth) rate.

se the standard-error of lambda.

loglik the log-likelihood at its maximum.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

See Also

branching.times, diversi.gof, diversi.time, ltt.plot, birthdeath, bd.ext,
yule.cov

yule.cov Fits the Yule Model With Covariates

Description

This function fits by maximum likelihood the Yule model with covariates, that is a birth-only model
where speciation rate is determined by a generalized linear model.

Usage

yule.cov(phy, formula, data = NULL)

Arguments

phy an object of class "phylo".

formula a formula specifying the model to be fitted.

data the name of the data frame where the variables in formula are to be found; by
default, the variables are looked for in the global environment.

Details

The model fitted is a generalization of the Yule model where the speciation rate is determined by:

ln
λi

1− λi
= β1xi1 + β2xi2 + . . . + α

where λi is the speciation rate for species i, xi1, xi2, . . . are species-specific variables, and β1, β2, . . . , α
are parameters to be estimated. The term on the left-hand side above is a logit function often used
in generalized linear models for binomial data (see family). The above model can be written in
matrix form:

164 yule.cov

logitλi = x′iβ

The standard-errors of the parameters are computed with the second derivatives of the log-likelihood
function. (See References for other details on the estimation procedure.)

The function needs three things:

a phylogenetic tree which may contain multichotomies;

a formula which specifies the predictors of the model described above: this is given as a standard
R formula and has no response (no left-hand side term), for instance: ~ x + y, it can include
interactions (~ x + a * b) (see formula for details);

the predictors specified in the formula must be accessible to the function (either in the global space,
or though the data option); they can be numeric vectors or factors. The length and the order of
these data are important: the number of values (length) must be equal to the number of tips of the
tree + the number of nodes. The order is the following: first the values for the tips in the same order
than for the labels, then the values for the nodes sequentially from the root to the most terminal
nodes (i.e. in the order given by phy$edge).

The user must obtain the values for the nodes separately.

Note that the method in its present implementation assumes that the change in a species trait is
more or less continuous between two nodes or between a node and a tip. Thus reconstructing the
ancestral values with a Brownian motion model may be consistent with the present method. This
can be done with the function pic but currently needs some hacking!

Value

A NULL value is returned, the results are simply printed.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

References

Paradis, E. (2005) Statistical analysis of diversification with species traits. Evolution, 59, 1–12.

See Also

branching.times, diversi.gof, diversi.time, ltt.plot, birthdeath, bd.ext,
yule

Examples

a simple example with some random data
data(bird.orders)
x <- rnorm(45) # the tree has 23 tips and 22 nodes
the standard-error for x should be as large as
the estimated parameter

zoom 165

yule.cov(bird.orders, ~ x)
compare with the simple Yule model, eventually
with a likelihood ratio test
yule(bird.orders)
another example with a tree that has a multichotomy
but we cannot run yule() because of this!
data(bird.families)
y <- rnorm(272) # 137 tips + 135 nodes
yule.cov(bird.families, ~ y)

zoom Zoom on a Portion of a Phylogeny

Description

This function plots simultaneously a whole phylogenetic tree (supposedly large) and a portion of it.

Usage

zoom(phy, focus, subtree = FALSE, col = rainbow, ...)

Arguments

phy an object of class "phylo".

focus a vector, either numeric or character, or a list of vectors specifying the tips to be
focused on.

subtree a logical indicating whether to show the context of the extracted subtrees.

col a vector of colours used to show where the subtrees are in the main tree, or a
function .

... further arguments passed to plot.phylo.

Details

This function aims at exploring very large trees. The main argument is a phylogenetic tree, and the
second one is a vector or a list of vectors specifying the tips to be focused on. The vector(s) can be
either numeric and thus taken as the indices of the tip labels, or character in which case it is taken
as the corresponding tip labels.

The whole tree is plotted on the left-hand side in a narrower sub-window (about a quarter of the
device) without tip labels. The subtrees consisting of the tips in ‘focus’ are extracted and plotted on
the right-hand side starting from the top left corner and successively column-wise.

If the argument ‘col’ is a vector of colours, as many colours as the number of subtrees must be
given. The alternative is to give a function that will create colours or grey levels from the number
of subtrees: see rainbow for some possibilities with colours.

Author(s)

Emmanuel Paradis 〈Emmanuel.Paradis@mpl.ird.fr〉

166 zoom

See Also

plot.phylo, drop.tip, layout, rainbow, grey

Examples

Not run:
data(chiroptera)
zoom(chiroptera, 1:20, subtree = TRUE)
zoom(chiroptera, grep("Plecotus", chiroptera$tip.label))
zoom(chiroptera, list(grep("Plecotus", chiroptera$tip.label),

grep("Pteropus", chiroptera$tip.label)))
End(Not run)

Index

∗Topic IO
read.dna, 122
read.GenBank, 119
read.nexus, 124
read.tree, 128
write.dna, 153
write.nexus, 155
write.tree, 157

∗Topic aplot
add.scale.bar, 13
axisPhylo, 21
identify.phylo, 81
ltt.plot, 87
nodelabels, 100

∗Topic arith
howmanytrees, 79

∗Topic array
matexpo, 90

∗Topic datagen
rtree, 134

∗Topic datasets
bird.families, 27
bird.orders, 28
carnivora, 33
chiroptera, 35
data.nex, 64
hivtree, 78
landplants, 86
opsin, 104
woodmouse, 152
xenarthra, 158

∗Topic dplot
varcomp, 149

∗Topic file
read.nexus.data, 126
write.nexus.data, 156

∗Topic hplot
cophyloplot, 54
ltt.plot, 87

plot.ancestral, 109
plot.correlogram, 110
plot.phylo, 111
plot.varcomp, 116
read.caic, 120
skylineplot, 139
subtreeplot, 141
zoom, 162

∗Topic htest
boot.phylo, 30

∗Topic internal
ape-internal, 15

∗Topic logic
is.binary.tree, 82

∗Topic manip
all.equal.phylo, 14
as.alignment, 15
as.matching, 17
as.phylo, 18
as.phylo.formula, 20
balance, 22
bind.tree, 24
boot.phylo, 30
branching.times, 32
chronogram, 37
coalescent.intervals, 40
collapse.singles, 41
collapsed.intervals, 42
compute.brlen, 51
consensus, 52
cophenetic.phylo, 53
dist.dna, 65
dist.gene, 68
dist.topo, 69
DNAbin, 2
drop.tip, 73
heterozygosity, 77
Initialize.corPhyl, 6
klastorin, 84

167

168 INDEX

ladderize, 85
mcmc.popsize, 91
mrca, 95
multi2di, 97
node.depth, 99
NPRS.criterion, 8
nuc.div, 103
print.phylo, 117
ratogram, 118
read.nexus, 124
read.tree, 128
reorder.phylo, 130
root, 131
rotate, 132
skyline, 137
subtrees, 142
summary.phylo, 143
theta.h, 144
theta.k, 145
theta.s, 146
unique.multiPhylo, 148
vcv.phylo, 150
weight.taxo, 151
which.edge, 151
write.nexus, 155
write.tree, 157

∗Topic math
howmanytrees, 79

∗Topic models
ace, 9
bd.ext, 23
BIONJ, 26
birthdeath, 28
chronoMPL, 36
chronopl, 38
compar.ou, 49
corBlomberg, 56
corBrownian, 57
corClasses, 58
corGrafen, 59
corMartins, 60
corPagel, 62
diversi.time, 71
DNAmodel, 3
evolve.phylo, 74
FastME, 75
Initialize.corPhyl, 6
mlphylo, 93

Moran.I, 6
nj, 98
phymltest, 105
sh.test, 136
yule, 159
yule.cov, 160

∗Topic multivariate
dist.dna, 65
mantel.test, 89
matexpo, 90
mst, 96
vcv.phylo, 150

∗Topic regression
compar.cheverud, 44
compar.gee, 45
compar.lynch, 47
correlogram.formula, 63
Moran.I, 6
pic, 107
varcomp, 149

∗Topic univar
base.freq, 22
cherry, 34
diversi.gof, 70
gammaStat, 76
GC.content, 5
heterozygosity, 77
nuc.div, 103
seg.sites, 135
theta.h, 144
theta.k, 145
theta.s, 146

∗Topic utilities
is.ultrametric, 83

.Machine, 83
[.DNAbin (DNAbin), 2
[.multiPhylo (print.phylo), 117
[[.multiPhylo (print.phylo), 117
$.multiPhylo (print.phylo), 117

ace, 9, 50, 75
add.scale.bar, 13, 21, 114
AIC.ace (ace), 9
AIC.phylo (mlphylo), 93
all.equal, 15
all.equal.phylo, 14
anova, 12, 47
anova.ace (ace), 9
ape-internal, 15

INDEX 169

as.alignment, 15
as.character.DNAbin

(as.alignment), 15
as.DNAbin, 3
as.DNAbin (as.alignment), 15
as.hclust, 18, 19
as.hclust.phylo (as.phylo), 18
as.matching, 17
as.matrix.DNAbin (DNAbin), 2
as.phylo, 18, 18, 20
as.phylo.formula, 19, 20
as.phylo.matching (as.matching),

17
axis, 21
axisPhylo, 13, 21, 114

balance, 22
base.freq, 5, 22, 103, 136
bd.ext, 23, 30, 72, 88, 160, 161
bind.tree, 24, 74, 132, 152
BIONJ, 26
bionj, 76, 95, 99
bionj (BIONJ), 26
bird.families, 27, 28
bird.orders, 27, 28
birth.step (ape-internal), 15
birthdeath, 24, 28, 71, 72, 88, 160, 161
boot.phylo, 30
BOTHlabels (ape-internal), 15
branching.times, 24, 30, 32, 41, 71, 72,

77, 88, 160, 161
buildTreeFromPhylo

(ape-internal), 15

carnivora, 33
cbind.DNAbin (DNAbin), 2
checkLabel (ape-internal), 15
cherry, 34
chiroptera, 35
chol2inv, 50
chronogram, 8, 9, 37, 37, 40, 86, 118
chronoMPL, 36, 40
chronopl, 37, 38
chronopl.cv (ape-internal), 15
circular.plot (ape-internal), 15
clado.build (ape-internal), 15
cladogram.plot (ape-internal), 15
coalescent.intervals, 40, 43, 139,

140

coef.corBlomberg (corBlomberg), 56
coef.corBrownian (corBrownian), 57
coef.corGrafen (corGrafen), 59
coef.corMartins (corMartins), 60
coef.corPagel (corPagel), 62
collapse.singles, 41
collapsed.intervals, 41, 42, 137, 139
compar.cheverud, 44
compar.gee, 45, 48, 108
compar.lynch, 45, 47, 47, 50, 108
compar.ou, 12, 49
compute.brlen, 51, 59, 60
consensus, 32, 52
cophenetic, 53
cophenetic.phylo, 53, 67, 68, 70
cophyloplot, 54
corBlomberg, 56, 58
corBrownian, 12, 50, 57, 58
corClasses, 6, 58, 58, 60, 61
corGrafen, 12, 58, 59
corMartins, 12, 50, 58, 60
corMatrix.corBlomberg

(corBlomberg), 56
corMatrix.corBrownian

(corBrownian), 57
corMatrix.corGrafen (corGrafen),

59
corMatrix.corMartins

(corMartins), 60
corMatrix.corPagel (corPagel), 62
corPagel, 58, 62
corPhyl (corClasses), 58
correlogram.formula, 63, 110, 111, 151
cynipids (data.nex), 64

data.nex, 64
death.step (ape-internal), 15
dendrogram, 19
destroyTree (ape-internal), 15
deviance.ace (ace), 9
deviance.phylo (mlphylo), 93
di2multi, 51, 52
di2multi (multi2di), 97
dist, 65, 67, 97
dist.dna, 4, 26, 65, 68, 76, 97, 99, 106,

107, 120, 124, 153
dist.gene, 67, 68, 97
dist.nodes (cophenetic.phylo), 53
dist.topo, 32, 53, 69

170 INDEX

diversi.gof, 24, 30, 70, 72, 160, 161
diversi.time, 24, 30, 71, 71, 160, 161
DNAbin, 2, 16, 23, 67, 120, 124, 153
DNAmodel, 3, 93–95, 137
drop.tip, 25, 73, 81, 132, 133, 142, 152,

163
drop1, 47
drop1.compar.gee (compar.gee), 45

edgelabels (nodelabels), 100
evolve.phylo, 74, 110
extract.popsize (mcmc.popsize), 91

f.cherry.uniform (ape-internal),
15

f.cherry.yule (ape-internal), 15
family, 160
FastME, 75
fastme, 26, 95, 99
fastme (FastME), 75
find.skyline.epsilon (skyline),

137
floating.pie.asp (ape-internal),

15
formula, 161

gammaStat, 35, 76
GC.content, 5, 23, 103, 136
getDurations (ape-internal), 15
getEdgeLengths (ape-internal), 15
getError (ape-internal), 15
getExternalParams (ape-internal),

15
getMisawaTajima (ape-internal), 15
getMRCA (ape-internal), 15
getNEdges (ape-internal), 15
getNFreeParams (ape-internal), 15
getRates (ape-internal), 15
gls, 58
grey, 163

H (heterozygosity), 77
hclust, 19
heterozygosity, 77, 145
hivtree, 78
howmanytrees, 79
ht.move (ape-internal), 15

identify, 82

identify.phylo, 81, 132
Initialize.corPhyl, 6
Initialize.corStruct, 6
is.binary.tree, 82, 83, 98
is.rooted (root), 131
is.ultrametric, 33, 82, 83

klastorin, 84, 104
klastorin_nTips (ape-internal), 15

ladderize, 85
landplants, 86
layout, 163
lines, 140
lines.popsize (mcmc.popsize), 91
lines.skyline (skylineplot), 139
lme, 149
locator, 13
logLik.ace (ace), 9
logLik.phylo (mlphylo), 93
loglik.pop (ape-internal), 15
lower.triang (ape-internal), 15
ltt.lines (ltt.plot), 87
ltt.plot, 24, 30, 71, 72, 77, 87, 139, 160,

161

mant.zstat (ape-internal), 15
mantel.test, 89
matexpo, 90
mcmc.popsize, 91
mlphylo, 4, 26, 76, 93, 99, 137, 144
mltt.plot (ltt.plot), 87
Moran.I, 6, 111, 151
mrca, 95
mst, 96
multi2di, 20, 52, 82, 97

Nedge (summary.phylo), 143
nEdges (ape-internal), 15
new2old.phylo (as.phylo), 18
nj, 26, 76, 95, 98
nlminb, 40
Nnode (summary.phylo), 143
nNodes (ape-internal), 15
node.depth, 99
node.height (ape-internal), 15
nodelabels, 32, 81, 82, 100, 114, 132, 133
NPRS.criterion, 8, 37, 38, 40, 86, 118
nsca (ape-internal), 15

INDEX 171

Ntip (summary.phylo), 143
nuc.div, 5, 23, 103, 136, 147

objFuncLogScale (ape-internal), 15
old2new.phylo (as.phylo), 18
opsin, 84, 104
optimTree (ape-internal), 15

par, 21, 87, 101
perm.rowscols (ape-internal), 15
phylog, 19
phylogram (ape-internal), 15
phymltest, 105
pic, 47, 48, 50, 107, 161
plot, 88, 97, 110, 114, 116, 140
plot.ancestral, 75, 109
plot.correlogram, 64, 110
plot.correlogramList

(plot.correlogram), 110
plot.mst (mst), 96
plot.multiPhylo (plot.phylo), 111
plot.phylo, 13, 21, 42, 55, 82, 85, 100,

101, 110, 111, 133, 142, 163
plot.phymltest (phymltest), 105
plot.popsize (mcmc.popsize), 91
plot.prop.part (boot.phylo), 30
plot.skyline (skylineplot), 139
plot.varcomp, 116
plotCophylo2 (ape-internal), 15
plotPhyloCoor (ape-internal), 15
pos.move (ape-internal), 15
prepareDNA (ape-internal), 15
prepareTree (ape-internal), 15
print, 117
print.birthdeath (birthdeath), 28
print.compar.gee (compar.gee), 45
print.DNAbin (DNAbin), 2
print.multiPhylo (print.phylo),

117
print.phylo, 117
print.phymltest (phymltest), 105
print.prop.part (boot.phylo), 30
prop.clades (boot.phylo), 30
prop.part, 53, 70
prop.part (boot.phylo), 30

rainbow, 162, 163
ratogram, 9, 37, 38, 40, 86, 118
rbind.DNAbin (DNAbin), 2

rcoal (rtree), 134
read.caic, 120
read.dna, 3, 16, 67, 95, 120, 122, 125, 153,

154
read.GenBank, 3, 16, 67, 119, 124, 154
read.nexus, 35, 121, 124, 127, 129, 155,

157, 158
read.nexus.data, 126, 126, 155, 157
read.table, 125
read.tree, 20, 26–28, 41, 42, 47, 52, 53,

70, 76, 82, 99, 107, 108, 114, 117,
121, 126, 128, 130, 144, 150, 155,
158, 159

reorder, 130
reorder.phylo, 85, 130
rmtree (rtree), 134
root, 25, 74, 131, 133, 152
rotate, 55, 132
rtree, 134

scan, 129
seg.sites, 5, 23, 103, 135, 147
setTree (ape-internal), 15
sh.test, 136
skyline, 42, 43, 77, 88, 92, 93, 137, 140
skylineplot, 93, 139, 139
solve, 50
sortIndex (ape-internal), 15
str.multiPhylo (print.phylo), 117
subtreeplot, 141, 143
subtrees, 142, 142
summary, 144
summary.DNAbin (DNAbin), 2
summary.phylo, 95, 117, 143
summary.phymltest (phymltest), 105
summary.prop.part (boot.phylo), 30

text, 13
theta.h, 144, 146, 147
theta.k, 145, 145, 147
theta.s, 78, 103, 136, 145, 146, 146
tiplabels (nodelabels), 100
tree.build (ape-internal), 15

unique, 148
unique.multiPhylo, 148
unroot (root), 131
unrooted.plot (ape-internal), 15
unrooted.xy (ape-internal), 15

172 INDEX

varcomp, 116, 149
vcv.phylo, 60, 150

weight.taxo, 8, 151
weight.taxo2 (weight.taxo), 151
which.edge, 151
woodmouse, 124, 152
write.dna, 3, 16, 67, 120, 124, 153
write.nexus, 126, 127, 129, 155, 157, 158
write.nexus.data, 126, 127, 155, 156
write.tree, 26, 76, 99, 107, 126, 129, 155,

157

xenarthra, 158
xyplot, 116

yule, 24, 30, 71, 72, 159, 161
yule.cov, 24, 30, 71, 72, 88, 160, 160

zoom, 35, 143, 162

	DNAbin
	DNAmodel
	GC.content
	Initialize.corPhyl
	Moran.I
	NPRS.criterion
	ace
	add.scale.bar
	all.equal.phylo
	ape-internal
	as.alignment
	as.matching
	as.phylo
	as.phylo.formula
	axisPhylo
	balance
	base.freq
	bd.ext
	bind.tree
	BIONJ
	bird.families
	bird.orders
	birthdeath
	boot.phylo
	branching.times
	carnivora
	cherry
	chiroptera
	chronoMPL
	chronogram
	chronopl
	coalescent.intervals
	collapse.singles
	collapsed.intervals
	compar.cheverud
	compar.gee
	compar.lynch
	compar.ou
	compute.brlen
	consensus
	cophenetic.phylo
	cophyloplot
	corBlomberg
	corBrownian
	corClasses
	corGrafen
	corMartins
	corPagel
	correlogram.formula
	data.nex
	dist.dna
	dist.gene
	dist.topo
	diversi.gof
	diversi.time
	drop.tip
	evolve.phylo
	FastME
	gammaStat
	heterozygosity
	hivtree
	howmanytrees
	identify.phylo
	is.binary.tree
	is.ultrametric
	klastorin
	ladderize
	landplants
	ltt.plot
	mantel.test
	matexpo
	mcmc.popsize
	mlphylo
	mrca
	mst
	multi2di
	nj
	node.depth
	nodelabels
	nuc.div
	opsin
	phymltest
	pic
	plot.ancestral
	plot.correlogram
	plot.phylo
	plot.varcomp
	print.phylo
	ratogram
	read.GenBank
	read.caic
	read.dna
	read.nexus
	read.nexus.data
	read.tree
	reorder.phylo
	root
	rotate
	rtree
	seg.sites
	sh.test
	skyline
	skylineplot
	subtreeplot
	subtrees
	summary.phylo
	theta.h
	theta.k
	theta.s
	unique.multiPhylo
	varcomp
	vcv.phylo
	weight.taxo
	which.edge
	woodmouse
	write.dna
	write.nexus
	write.nexus.data
	write.tree
	xenarthra
	yule
	yule.cov
	zoom
	Index

