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1 Introduction

This workshop will introduce techniques for estimating the parameters of epidemiological models. At
the same time, we’ll cover ways of evaluating models (e.g., overall model fit) and parts of models (e.g.,
hypothesis tests based on parameters or combinations of parameters). Typically, we assume (that is, we
pretend we know to be true) that the model takes a certain structure. In this module, we introduce some
of these structures. This introduction serves several purposes. First, by first looking at some specific
models we will start the estimation part of the workshop with a shared conceptual baseline. Second, the
models we look at here are fundamental and relatively general and therefore readily extended for your
own purposes in the future. Third, we introduce a number of numerical tools that are useful for studying
epidemiological systems. And, finally, by simulating these systems we produce some datasets in which
the dynamical data-generating process is truly known. By trying out our estimation techniques on these
known processes, we can study how well the various techniques perform under different circumstances.

2 The SIR model

The simplest place to start is with the classical SIR model. This model expands the SI model you
studied yesterday to include a class of “recovered” individuals, which are assumed to be immune. The
simply keeps track of how many individuals are in each class: individuals that leave one class must enter
another class (this is the conservation property), with exceptions for births and deaths. As with the SI

1



model, the state variables change according to a system of differential equations:

dS

dt
= µN − λ(I, t)S − µS

dI

dt
= λ(I, t)S − γ I − µ I

dR

dt
= γ I − µR

Here, µ is the birth and death rates (which we assume to be equal), N is the host population size, and
γ the recovery rate. The only interesting bit is the force of infection λ(I, t). We’ll assume that it has
the so-called frequency dependent form

λ(I, t) = β(t)
I

N

so that the risk of infection a susceptible faces is proportional to the fraction of the population that
is infectious. Notice that we allow for the possibility of a contact rate, β, that varies in time. In this
model, S, I, and R may be interpreted either as proportions of the population (if N = 1) or abundances
(if N > 1).

Like many epidemiological models, one can’t solve the SIR equations explicitly. Rather, to find the
trajectory of a continuous-time model such as the SIR, we must integrate those ordinary differential
equations (ODEs) numerically. What we mean by this is that we use a computer algorithm to approxi-
mate the solution. In general, this can be a tricky business. Fortunately, this is a well studied problem
in numerical analysis and (when the equations are smooth, well-behaved functions of a relatively small
number of variables) standard numerical integration schemes are available to approximate the integral
with arbitrary precision. Particularly, R has a very sophisticated ODE solver facility which for many
problems will give highly accurate solutions. To use the numerical integration package, we must load
the package

> require(deSolve)

[Note: If you get a warning that the package was not loaded, check to make sure it is installed on your
computer.]

The ODE solver needs to know the right-hand sides of the ODE. We give it this information as a function:

> sir.model <- function (t, x, params) {

+ S <- x[1]

+ I <- x[2]

+ R <- x[3]

+ with(

+ as.list(params),

+ {

+ dS <- mu*(N-S)-beta*S*I/N

+ dI <- beta*S*I/N-(mu+gamma)*I

+ dR <- gamma*I-mu*R

+ res <- c(dS,dI,dR)

+ list(res)

+ }

+ )

+ }

Notice that here, we’ve assumed β is constant.
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[Note: In case the with function is unfamiliar, it serves here to make the parameters params available
to the expressions in the brackets, as if they were variables. One could achieve the same effect by, for
example, dS <- params["mu"]*(params["N"]-S)-params["beta"]*S*I/params["N"] and so on.]

We’ll now define the times at which we want solutions, assign some values to the parameters, and specify
the initial conditions, i.e., the values of the state variables S, I, and R at the beginning of the simulation:

> times <- seq(0,10,by=1/120)

> params <- c(mu=1/50,N=1,beta=1000,gamma=365/13)

> xstart <- c(S=0.06,I=0.001,R=0.939)

Now we can simulate a model trajectory with the lsoda command:

> out <- as.data.frame(lsoda(xstart,times,sir.model,params))

and plot the results

> op <- par(fig=c(0,0.5,0,1),mar=c(4,4,1,1))

> plot(I~time,data=out,type='l',log='y')

> par(fig=c(0.5,1,0,1),mar=c(4,1,1,1),new=T)

> plot(I~S,data=out,type='p',log='xy',yaxt='n',xlab='S',cex=0.5)

> par(op)
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Exercise 1. Explore the dynamics of the system for different values of the β and µ parameters by
simulating and plotting trajectories as time series and in phase space (e.g., I vs. S).

*Exercise 2. Modify the codes given to study the dynamics of an SEIR model.

Seasonality

The simple SIR model always predicts damped oscillations towards an equilibrium (or pathogen ex-
tinction if R0 is too small). This is at odds with the recurrent outbreaks seen in many real pathogens.
Sustained oscillations require some additional drivers in the model. An important driver in childhood
infections of humans (e.g., measles) is seasonality in contact rates because of aggregation of children
the during school term. We can analyze the consequences of this by assuming sinusoidal forcing on β
according to β(t) = β0 (1 + β1 cos(2π t)). Translating this into R:

> seasonal.sir.model <- function (t, x, params) {

+ with(

+ as.list(c(x,params)),

+ {

+ beta <- beta0*(1+beta1*cos(2*pi*t))

+ dS <- mu*(N-S)-beta*S*I/N

+ dI <- beta*S*I/N-(mu+gamma)*I

+ dR <- gamma*I-mu*R

+ res <- c(dS,dI,dR)

+ list(res)

+ }

+ )

+ }

We’ll simulate as before, with the same mean contact rate, β0 as before, but now with a fairly strong
amplitude of seasonality, β1.

> times <- seq(0,100,by=1/120)

> params <- c(mu=1/50,N=1,beta0=1000,beta1=0.4,gamma=365/13)

> xstart <- c(S=0.06,I=0.001,R=0.939)

> out <- as.data.frame(lsoda(xstart,times,seasonal.sir.model,params,rtol=1e-12,hmax=1/120))

> op <- par(fig=c(0,0.5,0,1),mar=c(4,4,1,1))

> plot(I~time,data=out,type='l',log='y',subset=time>=90)

> par(fig=c(0.5,1,0,1),mar=c(4,1,1,1),new=T)

> plot(I~S,data=out,type='p',log='xy',subset=time>=50,yaxt='n',xlab='S',cex=0.5)

> text(0.02,0.0005,"last 50 yr of simulation")

> par(op)

4



90 92 94 96 98

1e
−

07
1e

−
05

1e
−

03

time

I

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●
●
●
●
●
●
●

0.010 0.015 0.025 0.040

S

I

last 50 yr of simulation

Exercise 3. Explore the effects of changing amplitude of seasonality, β1 on the dynamics of this model.
Be careful to distinguish between transient and asymptotic dynamics.

So far today we have used one model (the SIR model) to introduce two concepts (frequency-dependent
transmission and seasonal forcing) and one technique (numerical solution of ODEs).

3 Chain binomial model

In this next section we extend our toolbox to include a stochastic model, the chain binomial model. Why
do we need a stochastic model? The models introduced yesterday and in the preceding section were both
systems of deterministic differential equations. Although useful for some puposes, these models makes
two very restrictive assumptions. First, they assume that the change in the number of susceptible and
infectious individuals in the population happens continuously. In fact, since the population is finite and
the class values (S and I) are categorical, changes in the state variables in reality occur in jumps. This
is the problem of assuming a continuous state space. A more realistic model is one that is restricted
to the integers. To relax this assumption we could easily integerize this model by asserting that each
infected individual gives rise to β new infected individuals in each time step and numerically iterating
the model forward in time. But, this just reinforces another unrealistic assumption, which is that
each infected individual gives rise to precisely the same number of secondary infections, which arise
simultaneously after precisely the same amount of time. This deterministic assumption clearly is not
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biologically realistic. A solution that solves both problems is to use a model that is both naturally
restricted to the integers and in which the number of secondary infections is a random variable. Such a
model is said to exhibit demographic stochasticity. Demographic stochasticity is a kind of process noise
(to be contrasted with sampling error. The chain binomial model is a simple demographically stochastic
model. This model stipulates that the epidemic evolves according to discrete generations, each of which
is binomially distributed with a number of trials equal to the number of susceptibles, St, and probability
of infection, p = 1− exp(−β It). In probability notation:

It+1 ∼ binom(St, 1− exp(−β It))

Susceptibles are then depleted by the number of these infections

St+1 = St − It+1

Recall from probability and statistics that the binomial random variable is the number of independent
“successes” in a sequence of weighted coin tosses. The analogy here is that we toss a weighted coin
(with probability of heads p = 1 − exp(−β It)) for each susceptible individual in the population. If the
weighted coin does in fact come up heads then the susceptible individual becomes infected. Otherwise,
it stays susceptible and we move on to the next susceptible individual.

Simulating this simple model is easy in R. First, we write a function that simulates a single generation.

> chain.binomial.onestep <- function (x, params) {

+ S <- x[1]

+ I <- x[2]

+ beta <- params['beta']

+ new.I <- rbinom(n=1,size=S,prob=1-exp(-beta*I))

+ new.S <- S-new.I

+ c(S=new.S,I=new.I)

+ }

Then we put these together in sequence to simulate an entire epidemic:

> chain.binomial.model <- function (x, params, nstep) {

+ X <- array(dim=c(nstep+1,3))

+ colnames(X) <- c("time","S","I")

+ X[1,1] <- 0

+ X[1,-1] <- x

+ for (k in 1:nstep) {

+ X[k+1,1] <- k

+ X[k+1,-1] <- x <- chain.binomial.onestep(x,params)

+ }

+ X

+ }

We’ll now specify some parameters, simulate the model a few times, and plot the results.

> set.seed(38499583)

> nsims <- 10

> nstep <- 20

> xstart <- c(S=2000,I=2)

> params <- c(beta=1e-3)

> x <- vector(mode='list',length=nsims)
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> for (k in 1:nsims) {

+ x[[k]] <- as.data.frame(chain.binomial.model(xstart,params,nstep))

+ }

> plot(c(0,20),c(0,400),type='n',xlab='generation',ylab='incidence')

> for (k in 1:nsims) {

+ lines(I~time,data=x[[k]],col=k,type='o')

+ }
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In this section on the chain binomial model we’ve introduced another concept (demographic stochasticity
as a kind of process noise) and another technique (simulation of stochastic dynamical systems)

4 Birth-death processes

In the first section, we discussed a model that was deterministic, continuous in time, and continuous in
the state variables S, I, and R. In the second section, we relaxed the assumptions of determinism and
continuous state-space, but had to give up the (biologically appealing) feature of continuous time. That
is, the chain binomial model is defined to proceed over a sequence of discretely labeled intervals. The only
biological scenario under which this is strictly valid is that the generations are perfectly synchronized.
For some diseases, this may not be such a bad approximation; in others, it might very well be. Here
we look at a model that doesn’t make this assumption, i.e., the dynamics play out in continuous time,
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but we retain the criteria that the state variables may only take integer values and that the number of
secondary infections of each infected individual is a random variable. That is, we retain the assumptions
of demographic stochasticity.

At this point, there are still a number of different directions we could go. We will make two additional
assumptions that, together with the assumption of demographic stochasticity uniquely determine a whole
class of models. First, we assume that the epidemic is a Markov chain. A Markov chain is defined as a
stochastic process with the property that the future state of the system is dependent only on the present
state of the system and conditionally independent of all past states. This is known as the memoryless
property. Second, we assume that the changes in the state variables (increments and decrements) occur
one at a time. That is, we cannot have two individuals simultaneously undergoing a transition, where
“transition” refers to any change in the state variables (birth, death, conversion between classes, etc.).
For historical reasons, the continuous time Markov chain with increments and decrements of one is known
as a birth-death process. (In general, a Markov chain with integer-valued increments and decrements is
known as a jump process.)

Since this terminology is well entrenched, we’ll continue using it. Thus, when we refer to the “birth of a
susceptible” we really mean a demographic birth. But, when we refer to the “death of a susceptible”, this
could be a demographic death or it could be the transition of a individual from the susceptible class to
the infected class. In this general terminology, “birth” means “add one to the state variable” and “death”
means “subtract one from the state variable”. As with the deterministic SIR model, transitions will be
conserved, but (demographic) births and (demographic) deaths need not be conserved.

[Note: An aside about birth-death processes is that notation varies considerably from author to author,
even though the authors are referring to exactly the same stochastic process. Particularly, the com-
putational literature uses a notation borrow from chemistry, e.g., S

µS−→ S + 1, probably because the
algorithms that are commonly used to simulate birth-death processes were developed in the context of
chemical kinetics. Probabilists, by contrast, often use the generating function notation and scientists that
come to birth-death processes from a background in statistical mechanics represent the process using the
Forward Kolmogorov Equation or Fokker-Planck Equation (a partial differential equation). Textbooks in
ecology and epidemiology differ, too. The point is that once you learn to “read” the different notations,
they are all saying the same thing, i.e., that changes in the state variables occur according to such and
such rates. It’s these rates that are the basis of simulation modeling.]

Simple stochastic SI epidemic

To illustrate the approach, we’ll start with a simple closed stochastic SI epidemic. Because the pop-
ulation is closed (no births, deaths, or migration) we represent total population size as a constant N .
We denote the initial number of infected individuals by I0 and have the initial number of susceptible
individuals S0 = N − I0. By analogy to our deterministic model, we want the average rate at suscep-
tibles individually become infectious (the force of infection) to be β I

N and the average rate at which
the population as a whole converts from susceptible to infectious to be β I

N S. That is, at average rate
β I
N S the value of S is decremented by one and the value of I is incremented by one. But when do

these increments and decrements occur. To answer this, we turn to our assumption that the epidemic
process is Markovian. If we can determine what the sequence of “inter-event times” is, then we have
fully specified the trajectory of the epidemic, for we know that at each of those times the number of
susceptibles decreases by one and the number of infecteds increases by one. So, what are the inter-event
times? The memoryless property of the continuous time Markov chain entails that the time between
events is independent of the time between any other set of events, and, moreover, if we were to investigate
the process at any point in time between events that the time to the next event would be independent
of the time elapsed since the previous event. This defines the birth-death process as a kind of Poisson
process. There is only one distribution for the inter-event times that has this property, the exponential
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distribution. Since we know how to simulate random variables (in this case we use the function rexp)
we just simulate the sequence of event times and make our increments and decrements accordingly. This
approach is known as Gillespie’s direct method.

All that remains, then, is to relate the rate at which our process is happening to the generation of
exponential random numbers. An exponential distribution is defined by a single parameter, although
the formula may be written in different ways. The parameterization assumed by R conveniently assumed
the distribution is expressed in terms of a Poisson process, such that the argument is itself already the
rate. Thus, we simulate the inter-event time and update the state variables using one function

> birth.death.onestep <- function (x, params) {

+ S <- x[2]

+ I <- x[3]

+ beta <- params['beta']

+ new.I <- I+1

+ new.S <- S-1

+ new.t <- rexp(n=1,rate=beta*S*I/(S+I))

+ c(tau=new.t,S=new.S,I=new.I)

+ }

As in the examples above, we write a loop to iterate this simulation routine. Note that because time is
continuous, we don’t actually know how many events will occur in some specified period of time. Instead,
we save some pre-set number of “events”.

> birth.death.model <- function (x, params, nstep) {

+ X <- array(dim=c(nstep+1,3))

+ colnames(X) <- c("time","S","I")

+ X[1,] <- x

+ for (k in 1:nstep) {

+ X[k+1,] <- x <- birth.death.onestep(x,params)

+ }

+ X

+ }

Using the same parameters as before, we run some simulations and plot. Notice the function cumsum is
used to add up the inter-event times to give a time series.

> set.seed(38499583)

> nsims <- 10

> pop.size <- 200

> I0 <- 2

> nstep <- pop.size-I0

> xstart <- c(time=0,S=(pop.size-I0),I=I0)

> params <- c(beta=3e-2)

> x <- vector(mode='list',length=nsims)

> for (k in 1:nsims) {

+ x[[k]] <- as.data.frame(birth.death.model(xstart,params,nstep))

+ x[[k]]$cum.time <- cumsum(x[[k]]$time)

+ }

> max.y<-max(x[[1]]$cum.time)

> plot(c(0,pop.size),c(0,pop.size),type='n',xlab='time',ylab='incidence',xlim=c(0,max.y))

9



> for (k in 1:nsims) {

+ lines(I~cum.time,data=x[[k]],col=k,type='o')

+ }
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Exercise 4. Simulate the stochastic SI model using Gillespie’s direct method. Experiment with the
initial number of infecteds (I0) and with the total population size (N). What effects do these have on
the predictability of the epidemic?

Extending the SI model

In this section we extend the simple SI model to an arbitrary number of compartments. For concreteness,
we study a stochastic version of the SIR model from the first section. The main difference between the
SI model and the SIR model is that in the SIR model there’s more than one kind of event that can
occur. (Actually, this is true of the SI model with births and deaths, too, but we didn’t look at that).
That means we need to account for two things: (1) Our determination of the next event time has to take
into consideration the multiple processes that are occurring simultaneously, and (2) Once we determine
what time the event occurs we have to determine what type of event it is. Since the transition processes
are independent we can calculate a “total rate” as the sum of the individual rates. That is, the rate
at which the whole system is evolving is the sum of the rates of the individual processes which are the
absolute values of the different transition terms in the model. For example, the transitions associated
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with the susceptible class are transition to the infected class (at rate β I
N S), births (at rate µN), and

deaths (at rate µS). Thus, the “total rate” for the susceptible class is β I
N S + µN + µS. Our total

rate for the whole proceess will include the rates for the I and R classes as well. The next step in the
multi-dimensional Gillespie simulation is to determine which event occurs. In the long run each event
much occur at its specific rate. This means that we can just randomly choose which event occurs so long
as we do it in a weighted way such that each transition is selected in proportion to its contribution to
the total rate. First we define our one-step function. Notice the ordering of the if statements.

> sir.birth.death.onestep <- function (x, params) {

+ S <- x[2]

+ I <- x[3]

+ R <- x[4]

+ N <- S+I+R

+

+ with(

+ as.list(params),

+ {

+ total.rate <- mu*N+beta*S*I/N+mu*S+mu*I+gamma*I+mu*R

+ new.t <- rexp(n=1,rate=total.rate)

+ new.sir <- c(S,I,R)

+

+ U <- runif(1)

+ new.sir<-c(S,I,R-1) #death of recovered

+ if (U<=(mu*N+beta*S*I/N+mu*S+gamma*I+mu*I)/total.rate) new.sir<-c(S,I-1,R)

+ #death of infected

+ if (U<=(mu*N+beta*S*I/N+mu*S+gamma*I)/total.rate) new.sir<-c(S,I-1,R+1)

+ #recovery of infected

+ if (U<=(mu*N+beta*S*I/N+mu*S)/total.rate) new.sir<-c(S-1,I,R) #death of a susceptible

+ if (U<=(mu*N+beta*S*I/N)/total.rate) new.sir<-c(S-1,I+1,R) #transmission event

+ if (U<=(mu*N/total.rate)) new.sir<-c(S+1, I, R) #birth of susceptible

+ c(new.t,new.sir)

+ }

+ )

+ }

As before, we set parameters and loop through the process

> sir.birth.death.model <- function (x, params, nstep) {

+ X <- array(dim=c(nstep+1,4))

+ colnames(X) <- c("time","S","I","R")

+ X[1,] <- x

+ for (k in 1:nstep) {

+ X[k+1,] <- x <- sir.birth.death.onestep(x,params)

+ }

+ X

+ }

Now let’s repeat for 10 runs and plot.

> set.seed(38499583)

> nsims <- 10

11



> pop.size <- 100

> I0 <- 8

> S0 <- round(0.98*pop.size)

> nstep <- 1600

> xstart <- c(time=0,S=S0,I=I0,R=pop.size-I0-S0)

> params <- c(mu=0.00001,beta=60,gamma=365/13)

> x <- vector(mode='list',length=nsims)

> for (k in 1:nsims) {

+ x[[k]] <- as.data.frame(sir.birth.death.model(xstart,params,nstep))

+ x[[k]]$cum.time <- cumsum(x[[k]]$time)

+ }

> max.time<-x[[1]]$cum.time[max(which(x[[1]]$I>0))]

> max.y<-1.4*max(x[[1]]$I)

> plot(I~cum.time,data=x[[1]],xlab='time',ylab='incidence',col=1,xlim=c(0,max.time),ylim=c(0,max.y))

> for (k in 1:nsims) {

+ lines(I~cum.time,data=x[[k]],col=k,type='o')

+ }
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Exercise 5. Simulate the stochastic SIR model using Gillespie’s direct method. As before, experiment
with the initial number of infecteds (I0) and with the total population size (N). What effects do these
have on the predictability of the epidemic? How would you adapt the model to include seasonality?
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Additional issues

The birth-death framework is a popular approach to stochastic epidemic modeling. It has some important
limitations, however. Overcoming these limitations is an area of active research:

� For even moderately large systems, Gillespie’s direct method is very slow. Approximations are
available (e.g., the so-called “tau-leap method”) to speed up the calculations, though none is as
easy to program as the direct method.

� The Markovian assumption entails that the inter-event times of the birth-death process are expo-
nentially distributed. This is a biologically unrealistic assumption that has considerable impact on
the variance of the process. Non-Markovian (i.e., non-memoryless) processes are the solution, but
these come at the cost of additional conceptual and computational complexity.

This section on the simple stochastic SI and SIR epidemics has introduced two concepts (continuous
time Markov chains and the birth death process) and one technique (Gillespie’s direct method).

5 Fitting continuous-time models to data: trajectory matching

Thie final section of this module is a segue into the rest of the workshop. To get started, we focus on
one of the simplest approaches there is to estimation. If we assume that the only source of variability
in the data is measurement error, and that this is symmetrically distributed with a constant variance,
then least squares is a statistically appropriate basis for estimation. As a demonstration, we fit the
deterministic SIR model to the Niamey measles outbreak data.

> niamey2<-read.csv("commune.measles.csv",header=FALSE)

> niamey2[5,3]<-0 #replace a "NA"

> niamey<-data.frame(biweek=rep(seq(1,16),3),site=c(rep(1,16),rep(2,16),rep(3,16)),

+ cases=c(niamey2[,1],niamey2[,2],niamey2[,3]))

The first thing we do is write a specialized function for simulating the SIR model in a case where the
removal rate is hard-wired in and with no demography.

> closed.sir.model <- function (t, x, params) {

+ S <- x[1]

+ I <- x[2]

+ b <- params

+ dS <- -b*S*I

+ dI <- b*S*I-(365/13)*I

+ list(c(dS,dI))

+ }

Now we set up a function that will calculate the sum of the squared differences between the observations
and the model at any parameterization (more commonly known as “sum of squared errors”).

> sse.sir <- function(params0,data,site){

+ data<-data[data$site==site,]

+

+ t <- data[,1]*14/365
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+ cases <- data[,3]

+

+ b <- exp(params0[1])

+ S0 <- exp(params0[2])

+ I0 <- exp(params0[3])

+

+ out <- as.data.frame(lsoda(c(S=S0,I=I0),times=t,closed.sir.model,b,hmax=1/120))

+

+ sse<-sum((out$I-cases)^2)

+ }

The final step is to use the function optim to find the values of b, S0, and I0 that minimize the sum of
squared errors as calculated using our function.

> params0<-c(-3.2,7.3,-2.6)

> fit1 <- optim(params0,sse.sir,data=niamey,site=1);exp(fit1$par)

[1] 5.463181e-03 9.110385e+03 2.331841e+00

> fit2 <- optim(params0,sse.sir,data=niamey,site=2);exp(fit2$par)

[1] 8.666138e-03 6.276503e+03 2.843753e-01

> fit3 <- optim(params0,sse.sir,data=niamey,site=3);exp(fit3$par)

[1] 7.130417e-02 8.625791e+02 1.031319e-03

Finally, we plot these fits against the data.

> par(mfrow=c(2,2))

> plot(cases~biweek,data=subset(niamey,site==1),type='p',pch=21)

> t <- subset(niamey,site==1)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit1$par[2]),I=exp(fit1$par[3])),times=t,closed.sir.model,exp(fit1$par[1]),hmax=1/120))

> lines(mod.pred$I~subset(niamey,site==1)[,1])

> plot(cases~biweek,data=subset(niamey,site==2),type='b',col=site)

> t <- subset(niamey,site==2)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit2$par[2]),I=exp(fit2$par[3])),times=t,closed.sir.model,exp(fit2$par[1]),hmax=1/120))

> lines(mod.pred$I~subset(niamey,site==2)[,1])

> plot(cases~biweek,data=subset(niamey,site==3),type='b',col=site)

> t <- subset(niamey,site==3)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit3$par[2]),I=exp(fit3$par[3])),times=t,closed.sir.model,exp(fit3$par[1]),hmax=1/120))

> lines(mod.pred$I~subset(niamey,site==3)[,1])
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